
The VLDB Journal manuscript No.
(will be inserted by the editor)

Wenjie Zhang · Xuemin Lin · Ying Zhang · Jian Pei · Wei Wang

Threshold-based Probabilistic Top-k Dominating Queries

Received: date / Accepted: date

Abstract Recently, due to intrinsic characteristics in
many underlying data sets, a number of probabilistic
queries on uncertain data have been investigated. Top-
k dominating queries are very important in many ap-
plications including decision making in a multidimen-
sional space. In this paper, we study the problem of effi-
ciently computing top-k dominating queries on uncertain
data. We first formally define the problem. Then, we de-
velop an efficient, threshold-based algorithm to compute
the exact solution. To overcome some inherent compu-
tational deficiency in an exact computation, we develop
an efficient randomized algorithm with an accuracy guar-
antee. Our extensive experiments demonstrate that both
algorithms are quite efficient, while the randomized al-
gorithm is quite scalable against data set sizes, object
areas, k values, etc. The randomized algorithm is also
highly accurate in practice.

Keywords Uncertain Objects · Top k · Dominating
Relation

1 Introduction

Managing uncertain data has been studied ever since the
eighties of the last century by the database society [1,4,
24,29]. A great deal of research attention has been drawn
in the field recently as a result of many emerging, impor-
tant applications related with data uncertainty, including
sensor data analysis, economic decision making, market
surveillance and trends predication, etc. Uncertainty is
inherent in such applications due to various factors such
as data randomness and incompleteness, limitation of
equipment, and delay or loss in data transfer. A num-
ber of issues have been recently addressed; these include

Wenjie Zhang, Xuemin Lin, Ying Zhang, Wei Wang
The University of New South Wale & NICTA
E-mail: {zhangw, lxue, yingz, weiw}@cse.unsw.edu.au

Jian Pei
Simon Fraser University
E-mail: jpei@cs.sfu.ca

modeling uncertainty [2,36], query evaluation [10,13,14,
37], indexing [11,41], top-k queries [22,35,39,42], sky-
line queries [34], joins [26,27], nearest neighbor query [5,
9,27], clustering [28,30], etc.

Top-k dominating queries and skyline are shown as
useful tools in decision making [6,33,40,43] to rank cer-
tain data. A top-k dominating query retrieves the k ob-
jects with the highest dominating ability, that is, the k
objects that dominate the largest number of other ob-
jects. It is formally defined as follows [43]. Suppose that
X is a set of d-dimensional points. For a point x ∈ X , the
score function is defined as the number of points domi-
nated by x, namely, score(x) = |{x′ ∈ X |x ≺ x′}|. Here,
x ≺ x′ if the coordinate value of x is not greater than
that of x′ at each dimension with at least one dimen-
sion at which the coordinate value of x is smaller than
that of x′. score(x) is a useful ranking function due to
the following ordering property [43]: ∀x, x′ ∈ X , x ≺ x′

⇒ score(x) > score(x′). A top-k dominating query re-
trieves the k points in X with the highest scores. The
skyline operator retrieves all objects from X which are
not dominated by other objects.

The skyline operator and top-k dominating queries
rank objects in different ways: skyline ranks objects in a
“defensive” way and outputs the objects which are not
worse than any other objects in a given dataset, while a
top-k dominating query ranks objects in an “assertive”
way and provides the objects that are better than the
largest number of other objects. As pointed out in [43],
the benefit of using top-k dominating queries is to as-
similate the advantages of top-k queries and the skyline
operator. That is, the result size in a top-k dominating
query is strictly controlled by k, while like skyline oper-
ators, top-k dominating queries do not require a specific
ranking function and are not affected by potentially dif-
ferent scales at different dimensions.

Figure 1 shows the average performance of 3 popu-
lar NBA players from 3 selected games in their rookie
seasons with respect to two statistics aspects, number
of assists (AST) and number of points (PTS). To retain
the preference of smaller values, we record (30 − PTS)

2 Wenjie Zhang et al.

and (6−AST) in Figure 1, while the corresponding three
game statistics are depicted in Figure 2. According to the
aggregate information (average performance), the sky-
line consists of Shaquille O’neal and Elton Brand and the
top-2 dominating query also returns O’neal and Brand
in this example. Both dominate Brown but there is no
dominating relationship between O’neal and Brand.

5

10

15

20

1 2 3 4 5
(6 -AST)

(30 -PTS)

6

25

30

o

e

b

Fig. 1 Average

Kwame Brown (B)

Elton Brand (E)

Shaquille Oneal (O)

5

10

15

20

1 2 3 4 5
(6 -AST)

(30 -PTS)

o3

6

25

30

o2

o1

e1

e2

e3

b1

b2

b3

Fig. 2 NBA Players.

Motivating Example. Take NBA players as an exam-
ple. NBA players may be ranked in various ways. Dom-
inating queries provide an effective way to rank a player
according to the number of other players whom this
player outperforms. Using aggregates, such as AVER-
AGE per game, to summarize game statistics and then
to count dominating relationships by the top-k dominat-
ing computation techniques in [43] is an option. While
aggregates such as AVERAGE per game is useful to sum-
marize the statistic information, they do not quite reflect
the actual game-by-game performances and may be po-
tentially affected by “outliers”.

As depicted in Figure 2, O’neal’s overall performance
is affected by a bad outlier - o3. Consequently, O’neal ties
with Brand if we choose the top-1 dominating player ac-
cording to the aggregate information in Figure 1. How-
ever, intuitively O’neal should be the winner based on
the game-by-game statistics in Figure 2. The examples
depicted in Figures 1 and 2 are quite representative.

We have conducted an evaluation on the fourteen 1st
picks from 1991 to 2004 regarding their rookie seasons.
To conduct a fair evaluation, we use the first 54 games
(i.e. their rookie season games) against 3 kinds of game-
by-game statistics, scores, rebounds, and assists since the
year 1997 only has 54 games in the regular season. The
2nd column of Table 1 illustrates the ranks (bold num-
ber) of these players based on the number (the number
in the bracket) of players dominated by them, respec-
tively, using the average statistics per player, where Dun-
can is ranked first, Johnson is ranked 2nd, Webber and
Brand are tied at 3rd, and O’neal is ranked 5th. Note
that it is commonly believed that O’neal has the best
rookie season among those players especially comparing
to Brand’s rookie season 1. Thus, the top-k dominat-
ing queries against aggregates (average) may not provide
right semantics for the applications where each object
has multiple “instances” to occur.

1 See wikipedia and also http://armchairgm.wikia.com/
Top_No._1_Overall_NBA_Draft_Picks

Name
Ranks

agg 2% 5% 10% 20%

O’neal, S 5(4) 5(4) 3(5) 5(4) 5(4)

Johnson, L 2(6) 1(7) 2(6) 1(8) 1(10)

Duncan, T 1(7) 1(7) 1(7) 2(7) 2(7)

Webber, C 3(5) 3(5) 3(5) 3(5) 3(5)

Brand, E 3(5) 3(5) 3(5) 3(5) 3(5)

James, L 6(2) 6(2) 6(2) 6(2) 6(2)

Robinson, G 10(1) 10(1) 10(1) 10(1) 10(1)

Smith, J 6(2) 6(2) 6(2) 6(2) 6(2)

Iverson, A 10(1) 10(1) 10(1) 10(1) 10(1)

Ming, Y 6(2) 6(2) 6(2) 6(2) 6(2)

Howard, D 6(2) 6(2) 6(2) 6(2) 6(2)

Martin, K 10(1) 10(1) 10(1) 10(1) 10(1)

Olowokandi, M 13(0) 13(0) 13(0) 13(0) 13(0)

Brown, K 13(0) 13(0) 13(0) 13(0) 13(0)

Table 1 Ranks of NBA 1st Picks after removing outliers

Conducting an aggregate (e.g. average) after remov-
ing outliers and then applying the top-k dominating com-
putation technique in [43] is a possible paradigm. To ver-
ify the affect of such a paradigm, we conduct the exper-
iment on the above rookie data. We first employ one of
the most popular clustering algorithms, DBSCAN [17],
to remove 2%, 5%, 10% and 20% of instances as outliers
from each player by choosing the distance and density
parameters. Then, we calculate the average performance
over remaining data for each player and then do the dom-
ination counting against the average performance. The
result is depicted in Table 1 where x% for x = 2, 5, 10, 20
means x% of outliers have been removed. Table 1 shows
that removing outliers does not quite affect the above
rankings; this is because that there are bad outliers and
good outliers. Therefore, the paradigm of removing out-
liers and then applying the top-k dominating computa-
tion may suffer from the following issues.

– The actual distributions of multiple instances are not
addressed.

– Since ‘bad” and “good” performance outliers have
different affects, the contributions of “outliers” are
not evaluated.

Probabilistic Dominating Queries. To address the
applications where an object has multiple instances (e.g.
game statistics of a NBA player), in this paper we de-
velop a probabilistic model to measure the dominating
ability of each object. Unlike conventional dominating
queries, from probabilistic point of view each object could
dominate any number of objects even with a very small
probability (say 0, or close to 0). Therefore, we use the
probability q by which an object dominates at least l
objects to measure the dominating ability; that is, the
dominating ability of an object U is measured by two
parameters (q, l). Generally, the larger l, the smaller q.
Consequently, there are two ways to model a probabilis-
tic dominating query.

Threshold-based Probabilistic Top-k Dominating Queries 3

Name
Ranks

agg 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

O’neal, S 5 (4) 1 (1) 1 (2) 1 (2) 1 (3) 1 (4) 1 (5) 1 (5) 1 (6) 3 (7)

Johnson, L 2 (6) 2 (0) 2 (1) 1 (2) 1 (3) 1 (4) 1 (5) 1 (5) 1 (6) 1 (8)

Duncan, T 1 (7) 2 (0) 2 (1) 1 (2) 1 (3) 3 (3) 3 (4) 1 (5) 1 (6) 1 (8)

Webber, C 3 (5) 2 (0) 2 (1) 4 (1) 4 (2) 3 (3) 3 (4) 4 (4) 4 (5) 3 (7)

Brand, E 3 (5) 2 (0) 5 (0) 4 (1) 4 (2) 5 (2) 5 (3) 5 (3) 5 (4) 5 (6)

James, L 6 (2) 2 (0) 5 (0) 6 (0) 6 (1) 6 (1) 6 (2) 5 (3) 5 (4) 6 (5)

Robinson, G 10 (1) 2 (0) 5 (0) 6 (0) 6 (1) 6 (1) 6 (2) 7 (2) 7 (3) 8 (4)

Smith, J 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 6 (2) 7 (2) 7 (3) 8 (4)

Iverson, A 10 (1) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 9 (1) 7 (2) 7 (3) 8 (4)

Ming, Y 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 9 (1) 7 (2) 7 (3) 6 (5)

Howard, D 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 9 (1) 11 (1) 11 (2) 12 (2)

Martin, K 10 (1) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 9 (1) 11 (1) 11 (2) 11 (3)

Olowokandi, M 13 (0) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 13 (0) 13 (0) 13 (1) 13 (1)

Brown, K 13 (0) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 13 (0) 13 (0) 14 (0) 14 (0)

Table 2 Ranks of NBA 1st Picks

1. Given a probability threshold q, for each object U
compute the maximum l such that U dominates at
least l other objects with probability not smaller than
q.

2. Given a threshold l, for each object U compute the
maximum q such that U dominates at least l objects
with probability not smaller than q.

In the second model, q could be very small. To control
the value of q, in this paper we focus on the first model.
Nevertheless our techniques can be immediately applied
to the second model; we will discuss this in Section 7. In
Table 2, we show the ranking results according to the 1st
model where we assign each game statistic by the same
occurrence probability. The 3rd to 11th columns show
the ranks based on different probability thresholds, re-
spectively. For example, in the column headed by the
threshold 0.5, O’neal dominates at least 4 (the number
in bracket) other players with at least the probability
0.5; thus he is ranked 1st (bold number). Clearly, O’neal
is the winner against each of those probability thresholds
except when the probability threshold is 0.1 (worse than
Duncan and Johnson). The probabilistic rankings catch
the common perception better. It is also interesting to
note that Duncan dominates 7 players with a probabil-
ity between 0.1 to 0.2, while according to the average
(aggregate) game statistics Duncan actually dominates
7 players. Clearly, the domination counting regarding a
small q is largely biased towards to “good” outliers. On
the other hand, the phenomenon for a very large q (close
to 1) is not very meaningful since q is always 1 if l = 0.
The most interesting part of q is towards the middle
of (0, 1]; these values will show the dominating ability
among majority instances of objects, respectively. In ad-
dition, our probabilistic model provides a tool for us to
“drill down” information against different probabilistic
threshold values to provide the breakdown information
like that in Table 2.

Probabilistic Top-k Dominating Queries. In this
paper, we will study the problem of retrieval of k ob-
jects with the maximum values of l for a given probability
threshold q (i.e., based on the 1st model). We will adopt
the assumption that the probability distribution of the
object is independent to each other due to the following
reasons. Firstly, it is a common model currently adopted
in probabilistic query processing. Secondly, handling de-
pendence among a large number of objects is not only
complex but also expensive, while applications with the
assumption of independent distributions exist. For ex-
ample, regarding the above example there is no reason
to believe a dependence among those 1st picks’ perfor-
mance in their rookie season across different years, given
the game rules are the same and the other players in
each year have similar talents. Similarly, we could also
evaluate the top-k all-round gymnastics players with the
same gender by treating each competition record as an
instance of a player where each competition record con-
sists of scores for each individual programs. In male com-
petitions, scores from Vault, Floor, Parallel bars, Rings,
Pommel horse and Horizontal bar are recorded in each
competition, respectively, as a 6-dimensional instance.
While the performances of each female player in four
programs (Vault, Floor, Uneven bars and Balance beam)
are recorded per each competition. Clearly, the perfor-
mances of the players are independent with each others.
Contributions. As shown above, dominating relation-
ships among uncertain objects are quite complex and
probabilistic distribution dependent. Moreover, due to
the nature of uncertain data and dominating queries, an
expensive computation will be involved in exactly com-
puting “probabilistic” scores of objects; consequently, it
is too expensive to compute such scores for all objects.

In this paper, we investigate the problem of efficiently
computing the top-k dominating queries against uncer-
tain objects where object PDFs are not available; that
is, we deal with discrete cases. To the best of our knowl-

4 Wenjie Zhang et al.

edge, this is the first work addressing the top-k dominat-
ing query over uncertain data. Our contributions may be
summarized as follows.

– We formally define a top-k dominating query on un-
certain data with a given probability threshold im-
posed to support different confidence requirements.

– An efficient, threshold-based exact algorithm is pro-
posed to take an advantage of the threshold-based
paradigm [18]. Based on a novel application of laws
of large numbers [20] and mathematic characteriza-
tions, a set of novel, effective pruning techniques have
been proposed to pursue efficiency.

– We develop an efficient randomized algorithm with
an accuracy guarantee. Novel processing techniques
and data structures are developed in our randomized
techniques.

An extensive experimental study over synthetic and real
data shows that our exact algorithm performs well, while
our randomized algorithm is not only highly accurate
and more efficient than the exact algorithm but also quite
scalable against data sizes, object uncertain areas, k val-
ues, etc.
Organization of the paper. The rest of this paper
is organized as follows. Section 2 formally defines prob-
abilistic top-k dominating queries and presents prelimi-
naries. Section 3 briefly outlines the framework of our ex-
act and randomized algorithms. In Section 4, we present
our exact algorithm. Following the framework of exact
algorithm, a novel randomized algorithm is presented in
Section 5. Our experiment results are reported in Sec-
tion 6. This is followed by the discussions regarding the
model where a threshold of a domination counting is
given and the general cases where probabilistic distribu-
tions may be correlated. The related work is presented
in Section 8. We conclude our paper in section 9.

2 Background Information

We first model the problem and then, present the pre-
liminaries of the paper. For reference, notations used in
this paper are summarized in Table 3.

2.1 Problem Statement.

Our investigation in the paper will focus on discrete
cases. An uncertain object U is represented by a set of
instances such that each instance u ∈ U is a point in
a d-dimensional numeric space D = {D1, ..., Dd} with
the probability P (u) to occur where 0 < P (u) ≤ 1 and∑

u∈U P (u)=1.
Given a set of uncertain objects U = {U1, · · · , Un}, a

possible world W = {u1, · · · , un} is a set of n instances
- one instance per uncertain object. The probability of
W to appear is P (W) =

∏n
i=1 P (ui). Let Ω be the set of

Notation Definition

U set of uncertain objects

U , V uncertain objects

u, v instances of uncertain objects

E entry in an aR-tree of objects,
instances, and samples

MBBU (MBBE) minimum bounding box of U(E)

µU (µE) upper-right corner of
MBBU (MBBE)

ıU (ıE) lower-left corner of
MBBU (MBBE)

P (τ) probability of τ to occur

q probability threshold of a query

pscore(υ) probabilistic score of υ (υ = U
or u)

pscore+ upper bound of pscore

P=l(U)(P=l(u)) probabilities to dominate l
objects

P≥l(U)(P≥l(u)) probabilities to dominate ≥ l
objects

γk minimum pscore of the top-k
objects

λk minimum pscore of the current
top-k objects

P (u ≺ V) probability of u dominating V

Ω set of possible worlds

Li(U) ith level entries in an aR-tree of
U

P upper upper bound of probability P

PD(U) (FD(U)) set of objects partially (fully)
dominated by U

PD(E) (FD(E)) set of entries (objects) partially
(fully) dominated by E

−→U
partially ordered list of uncertain
objects

Table 3 The summary of Notations.

all possible worlds; that is, Ω = U1 ×U2 · · · ×Un. Then,∑
W∈Ω P (W) = 1.
Ω`,U denotes the set of possible worlds in each of

which the instance u ∈ U dominates exactly ` other in-
stances. Clearly, the probability P=`(U) of U dominating
exactly ` objects is:

P=`(U) =
∑

W∈Ω`,U

P (W). (1)

Example 1 Regarding the example in Figure 2, we treat ev-

ery player as an uncertain object and each game statistic as

an instance of the object. Unless specified otherwise, the oc-

curring probability of each instance is 1/3. Ω1,O = {{o3, e1, b3},
{o3, e2, b3}, {o3, e3, b3}, }. Dominating probabilities of each

player are as follows.

P=0(O) = 2/9, P=1(O) = 3/27, P=2(O) = 2/3;

P=0(E) = 0, P=1(E) = 2/3, P=2(E) = 1/3;

P=0(B) = 1, P=1(B) = 0, P=2(B) = 0.

As mentioned earlier, unlike dominating queries on
certain objects, an uncertain object can dominate any
number of objects with some probability. Nevertheless,

Threshold-based Probabilistic Top-k Dominating Queries 5

such dominating probabilities could be very small (even
zero); results with a small probability to occur are not
very interesting. To resolve this, in our problem defini-
tion we enforce a probability threshold, and we model
probabilistic dominating queries in an accumulative way;
that is, we look for the objects that dominate at least `
other objects with at least probability (confidence) q. We
assign a probabilistic score, pscoreq(U), to each uncer-
tain object U as follows.

Let P≥`(U) denote the probability of U dominating
at least ` other objects. Clearly,

P≥`(U) =
n∑

i=`

P=i(U). (2)

Definition 1 (pscoreq) pscoreq(U) is the maximum `
such that P≥`(U) ≥ q.

Note that for notation simplification, pscoreq is hereafter
abbreviated to pscore whenever there is no ambiguity.

Definition 2 (PtopkQ) Given a probability threshold
q, an integer k, and a set U of uncertain objects, PtopkQ
retrieves the k objects with the highest pscore values.
Ties are broken arbitrarily.

Example 2 Regarding the example in Figure 2 when q =

2/3, pscoreq(O) = 2, pscoreq(E) = 1 and pscoreq(B) = 0;

that is, O’neal is the top dominating player.

In this paper, we will develop efficient exact algorithms
as well as efficient and effective randomized algorithms
to compute PtopkQ.

2.2 Preliminaries

Dominating Relationships. A pair U , V of uncer-
tain objects may have three relationships as illustrated
in Figure 5.

Let MBBU denote the minimum bounding box of the
instances of an uncertain object U . µU and ıU are the
upper-right and lower-left corner of MBBU , respectively.
An object U fully dominates another object V if µU ≺
ıV , and partially dominates V if ıU ≺ µV but µU ⊀
ıV , including µU = ıV . Otherwise, U does not dominate
V . As depicted in Figure 5, U does not dominate V1,
partially dominates V3, and fully dominates V2.
Centroid. The dominating ability of an object is deter-
mined by the distribution of its instances and its relation-
ships to the distributions of instances of other objects.
The centroid ω(U) of instances will be used in our al-
gorithms to approximately represent the distribution of
instances. Formally, ω(U) =

∑
u∈U P (u)× u.

aR-tree. An aggregate R-tree (aR-tree) [31] is an exten-
sion of R-tree [21] where each entry keeps the number of
objects contained. Figure 3 illustrates 9 data points in-
dexed by an aR-tree, bounded by 3 MBBs at the leaf
level.

Y

X

E1

E3

E2

root

Fig. 3 Certain Data

Y

X

U1

U2

U3

U4

U5

U6

U7

U8

U9

Fig. 4 Uncertain Data

Top-k Dominating Query on Certain Data. Given
a k and a set of points, the CBT (cost-based traversal)
algorithm in [43] selects the k points with the highest
dominating score values. Recall that score(x) of a point
is the number of other points dominated by x. Below we
briefly introduce CBT, to be used as a black-box in the
preprocessing of our algorithm in Section 4.1.

In CBT, an aR-tree is used. The algorithm CBT tra-
verses the aR-tree level by level to calculate a lower
bound score−(E) and an upper-bound score+(E) of the
number of points dominated by a point in an entry E of
aR-tree. An entry E is pruned if score+(E) is not greater
than the current kth largest score− and the points in E
are the solution if score−(E) is not smaller than the
current kth largest score+; otherwise E will be drilled
down to the lower level; these are conducted by taking
the consideration of the number of points in intermedi-
ate entries of aR-tree. In our preprocessing, we will make
use of the entries that are either pruned or stayed in the
job queue when the algorithm CBT terminates. Clearly,
these entries are disjoint and cover all points. Note that
these entries can be either points or intermediate entries.
Below is an example.

Example 3 Regarding the example in Figure 3, if k=2, the
algorithm terminates with the following entries in the job
queue:

{ω1.[6, 6], ω4.[4, 4], ω2.[3, 3], ω3.[3, 3], ω5.[0, 3], ω6.[0, 0]},
while E3.[0, 2] is pruned. In each entry representation, the

left-end in the bracket is score− and the right-end is score+.

Top-2 dominating results retrieved is thus ω1 and ω4.

Efficient Computation of Dominating Probabili-
ties. P (u ≺ V) denotes the probability that an instance
u ∈ U dominates an uncertain object V ; that is, the
sum of the probabilities of the instances in V which are
dominated by u. For instance regarding the example in
Figure 2, P (o3 ≺ B) = 1/3 (recall each instance takes
the probability 1/3 to occur).

Let P=`(u) denote the probability that an instance
u ∈ U dominates ` other objects. ΩU−U

` (u) denotes the
subset of possible worlds in

∏
V ∈U−U V in each of which

u dominates exactly ` instances. Clearly, P=`(u) =∑
W∈ΩU−U

` (u) P (W).

Example 4 Regarding Figure 2, let U = E, and ` = 2. Then,

ΩU−U
` (e1) = {(o3, b1), (o3, b2), (o3, b3)}. P=2({e1}) = 1/3∗1/3

+1/3 ∗ 1/3 + 1/3 ∗ 1/3 = 1/3.

6 Wenjie Zhang et al.

fully dominated
y

x

partially dominated

not dominated

U

V2V3

V1

Fig. 5 Dominating Relationships.

We can immediately verify that (1) can be re-written as
follows.

P=`(U) =
∑

u∈U

P (u)P=`(u). (3)

Based on (2) and (3), P≥` can be rewritten as:

P≥`(U) =
∑

u∈U

(P (u) · (1−
`−1∑

i=0

P=i(u))). (4)

According to Equation 3, a key to compute pscore(U)
and P=`(U) is to efficiently compute P=`(u) for each
u ∈ U . Suppose that we already computed P (u ≺ V)
for every V ∈ U − U . The dynamic programming based
techniques in [42] can be immediately used to compute
P=`(u) (∀u ∈ U) with time complexity O(|U − U | × `)
for a given u. Assume that uncertain objects in U − U
are represented by {Vi : 1 ≤ i ≤ n − 1}; note that ob-
jects in U −U can follow any order. We use pi to denote
P (u ≺ Vi). For 0 ≤ n1 ≤ n2, let Pn1,n2 denote the proba-
bility that u exactly dominates n1 objects from the first
n2 objects of U − U . It is shown [42] that ∀0 ≤ i ≤ j
(P0,0 = 1),

P0,j = P0,j−1 · (1− pj) = Πj
k=1(1− pk)

Pi,j = pi · Pi−1,j−1 + (1− pi) · Pi,j−1

(5)

Let FD(u) denote the set of objects fully dominated
by u; that is, ∀U ∈ FD(u), P (u ≺ U) = 1. Let PD(u)
denote the set of objects partially dominated by u. It can
be immediately verified that:

P=`(u) = P=(`−|FD(u)|)|PD(u)(u ≺ PD(u)). (6)

Here, P=(`−|FD(u)|)(u)|PD(u) denotes the probability that
u dominates exactly (`−|FD(u)|) objects in PD(u) since
the probability for u to dominate each object in FD(u)
is always 1. Consequently, in our techniques for each u
we apply the dynamic programming technique on objects
in PD(u) only. Whenever there is no ambiguity, P=l(u)
(or P≥l(u)), thereafter, always refers to the dominating
probability against PD(u) and l = ` − |FD(u)| where
` > |FD(u)| since all objects in FD(u) are dominated
by u with the probability 1.

Example 5 Regarding Figure 2, p1 = P (e1 ≺ O) = 1/3, and

p2 = P (e1 ≺ B) = 1. By the above dynamic programming

based algorithm, P0,1 = 1 − p1 = 2/3, P0,2 = P0,1 ∗ (1 − p2)

= 0, P1,1 = p1 = 1/3 , P1,2 = P0,1 ∗p2 +P1,1 ∗ (1−p2) = 2/3.

Thus, P=1(e1) = 2/3.

2.3 Challenges

1. A solution to PtopkQ highly depends on the proba-
bility distribution of objects even if spatial locations
of the instances are fixed.

Example 6 Regarding the example of Figure 2, if we fix

the spatial locations of these 9 instances but change the

probability of instances from O’neal as follows, P (o1) =

1/6, P (o2) = 1/6 and P (o3) = 2/3. The occurrence prob-

ability of every other instance remains 1/3. Then, we can

immediately verify that regarding q = 2/3, pscore(O) =

1, pscore(E) = 2 and pscore(B) = 0. In this case, the

top-1 dominating query retrieves Brand instead of O’neal

(the top-1 result in Example 2).

2. Techniques developed solely on aggregate informa-
tion cannot provide a correct solution to PtopkQ. It
should be very straightforward to construct two dif-
ferent scenarios with the same aggregate information
as depicted in Figure 1 such that they lead to differ-
ent solutions towards PtopkQ.

3. The computation of pscore(U) for an uncertain ob-
ject U takes O(|U | × pscore(U) × |PD(U)|) time as
shown above. Trivially computing pscore(U) for all
U ∈ U and then choosing k objects with the highest
pscore values is computationally very expensive and
slow.

3 Framework

Our exact and randomized algorithms both follow the
threshold-based paradigm by using a combination of two
thresholds based on q and pscores, respectively, to effi-
ciently prune away objects not in PtopkQ as early as pos-
sible. Below, Algorithm 1 is an outline of the framework
to be adopted in the exact and randomized algorithms.
It follows three steps, pre-ordering, initial computation
and final computation.

Algorithm 1 Exact Algorithm
Step 1: Pre-ordering. For all uncertain objects U , generate

an ordered list
−→U of U .

Step 2: Initial Computation. Choose the first k objects {Ui :

1 ≤ i ≤ k} in
−→U and compute their pscore (for exact

algorithm) or pscorer (for randomized algorithm) values.
Step 3: Final Computation. Determine the solution of

PtopkQ in a “level-by-level” fashion.

Using
−→U resulted in Step 1, score values for the first

k objects are computed in Step 2. Such values serve as
thresholds in Step 3.

3.1 Data Structures

In the exact and randomized algorithms, we maintain
an aR-tree on centroids to run CBT algorithm [43] as

Threshold-based Probabilistic Top-k Dominating Queries 7

preprocessing (Step 1). We also maintain an aR-tree on
the MBBs of uncertain objects to speed-up our pruning
techniques at the object level.

Moreover, in the exact algorithm, for each object U ,
we build a local data structure, aR-tree, to organize its
instances to efficiently support a level-by-level pruning
computation in Step 3. However, the randomized algo-
rithm indexes the sampled instances of each uncertain
object using a novel data structure gCaR-tree for effi-
ciency.

3.2 Monotonic Property

The following monotonic property will be effectively used
to terminate our algorithm as early as possible. It imme-
diately derives from Equation(2).
Monotonic Property: For an uncertain object U and
two integers `1 and `2, if `1 ≥ `2, P≥`1(U) ≤ P≥`2(U).

3.3 Efficient Level-by-level Computation

In the exact algorithm, for each uncertain object U in
U , instances in U are indexed using an aR-tree. Suppose
that E ∈ U is at the ith level of the aR-tree. Let Li(U)
denote the set of entries in the ith level of local aR-tree
of U . The equation (4) can be rewritten as:

P≥l(U) =
∑

E∈Li(U)

P≥l(E) (7)

It will be too expensive to compute P≥l(E) in our level-
by-level computation. Instead, we use upper-bound tech-
niques to bound P≥l(E) for efficiency.

Let (U − U)i denote the objects in U − U with the
following modification regarding level i. For each object
V ∈ U−U and each entry EV at the ith level of the local
aR-tree of V , we move all the instances contained by EV

to the upper-right corner µEV of EV . Let ıE denote the
lower-left corner of E. Let P≥λ(ıE ≺ (U − U)i) denote
the probability that ıE dominates at least λ objects in
(U − U)i.

Theorem 1 P≥λ(E) ≤ P≥λ(ıE ≺ (U−U)i)
∑

u∈E P (u).

Proof It can be immediately verified that for each possi-
ble world in the original case where an instance u from E
dominates at least λ instances from different objects, its
corresponding instance as modified above retains such a
property. ¤

It is immediate that an application of the dynamic pro-
gramming based algorithm in Section 2.2 leads to the
time complexity O(m1×C×λ) to compute P≥l(E) where
m1 is the number of instances in E and C is the aver-
age cost to compute dominating probability between an
instance and an object, while the computation of the

upper-bound in Theorem 1 only takes O(λ × m2) time
where m2 is the number of entries partially dominated
by E. Clearly, m2 is much smaller than C.

Example 7 In Figure 4, assume that we want to compute
P≥λ(U). Theorem 1 states that we can get an upper-bound
of P≥λ(U) at the root level of local aR-trees of objects. Let
ı3 be the lower left corner of the MBB of U3 and µi (for
1 ≤ i ≤ 9) be the upper right corner of Ui.

Then, (U − U3)1 = {µi|1 ≤ i ≤ 9 & i 6= 3 & P (µi) = 1}.
Theorem 1 states that P≥λ(U) ≤ P≥λ(ı3 ≺ (U − U3)1) since∑

u∈U3
P (u) = 1.

4 Exact Algorithm

We present detailed techniques developed based on the
framework in Section 3. The first step and the second
step are quite straightforward and mainly based on the
techniques in [43,42]. The third step is the most impor-
tant step in Algorithm 1 to prevent as many objects as
possible from an exact computation of pscore; novel, ef-
fective, efficient pruning techniques are developed.

4.1 Step 1: Pre-ordering Objects

Step 1 aims to generate such an access order so that the
maximal possible threshold value regarding pscore can
be reached as soon as possible. Clearly, the maximum
possible threshold value regarding pscore should be the
minimum value of the pscores of the top-k objects. Nev-
ertheless, this is infeasible to achieve without conducting
an exact computation of PtopkQ. The following heuristic
is developed to resolve this.

The centroid ω(U) (∀U ∈ U) is used to approximately
represent the probabilistic distribution of an uncertain
object U with the aim to use score(ω(U)) to approxi-
mately reflect the rank of pscore(U). Note that it is quite
expensive to compute score(ω(U)) for each object U . In-
stead, we apply the CBT algorithm (briefly introduced
in section 2.2) to generate an approximately ordered list−→U as follows.

In
−→U , we keep the scored entries of the aR-tree of

centroids, generated by CBT; that is, the entries pruned
by CBT or the entries remained in the job queue once it
terminates (as described in Section 2.2). Then, we sort
entries in

−→U non-increasingly according to their accom-
panied score+ values. When a centroid ω(U) and the
intermediate entry E have the same score+ value, we
always rank ω(U) before E in

−→U . Then, if two score+

values from two centroids are the same, we always rank
a centroid with the exact score value higher. In other
cases, entries with the same score are ranked randomly
among them. Note that in an entry, each contained cen-
troid ω(U) corresponds to the object U ; we use U to
replace ω(U) in

−→U .

8 Wenjie Zhang et al.

Example 8 Regarding the example in Figure 3 and Figure
4, Figure 3 shows the centroids of uncertain objects in Figure
4. As shown in Example 3 when k = 2,

{ω1.[6, 6], ω4.[4, 4], ω2.[3, 3], ω3.[3, 3], ω5.[0, 3], ω6.[0, 0]},

remain in job queue, while E3.[0, 2] is pruned by CBT. Con-

sider that ωi (for 1 ≤ i ≤ 9) corresponds to the uncertain

object Ui. Therefore,
−→U = {U1, U4, U2, U3, U5, E3, U6} when

k = 2. Their score+ values are 6, 4, 3, 3, 3, 2, and 0, respec-

tively.

4.2 Step 2: Initial Computation

Our algorithm to calculate the pscores for each U of the
first k objects in

−→U is outlined below in Algorithm 2.

Algorithm 2 Calculate pscore

Step 2.1: Traverse the aR-tree of objects’ MBBs to obtain
the number of objects that U fully dominates |FD(U)|,
and the set PD(U) of objects that U partially dominates.

Step 2.2: Do a synchronous traversal [7,32] of the local aR-
tree of U against the local aR-trees of the objects in
PD(U) to calculate P (u ≺ V) for each V ∈ PD(U) and
each instance u ∈ U .

Step 2.3: Calculate the pscore(U).

We conduct step 2.1 by window query techniques [21]
by using ıU to get all objects that U dominates (fully or
partially) and then use µU to check the full dominance.

We conduct Step 2.2 by the well known synchronous
traversal paradigms [7,32] to compute P (u ≺ V) (∀u ∈
U and ∀V ∈ PD(U)) since the synchronous traversal
paradigm has been shown effective in join computation.
Moreover, [43] shows that on average the synchronous
traversal strategy is the most cost effective way to count
the dominance relationships. Finally, our techniques can
be extended to cover any traversal strategies.

Note P≥l(U) =
∑

u∈U P (u)P≥l(u). In Step 2.3, to
calculate P≥l(U) we apply the dynamic programming
based algorithm in Section 2.2 to calculate P≥l(u) (∀u ∈
U) restricted to the objects in PD(U). Based on the
monotonic property in Section 3.2, when P≥l(U) ≥ q and
P≥(l+1)(U) < q, the computation stops and (l+|FD(U)|)
is the pscore for U . To avoid any redundant computa-
tion, we conduct the calculation in Equation (4) itera-
tively from l = 0. After the completion of calculation
of P≥l(u) for each u ∈ U for the current l, we exam-
ine if P≥l(U) ≥ q to determine whether we should stop
a further calculation of such probability. We can imme-
diately verify that the time complexity of Step 2.3 is
O(l × |PD(U)| × |U |) for each U .

4.3 Step 3: Final Computation

The final computation is conducted by bounding-
pruning-refining. This will be based on a threshold of

pscore and the given confidence q. Clearly, the best avail-
able threshold of pscore is the minimum value, denoted
by λk, of pscores of the current top-k objects. To pur-
sue efficiency, for each remaining U the Step 3 will be
conducted level-by-level in a synchronous traversal fash-
ion among the local aR-trees of U and the objects in
PD(U);2 nevertheless, our techniques can be extended
to any traversal strategies. Our algorithm for Step 3 is
outlined in Algorithm 3.

Algorithm 3 Final Computation

Tk := {the first k objects from
−→U }; −→U :=

−→U − Tk;

WHILE
−→U 6= ∅ DO

Step 3.1 - Pruning at Object Level: Dequeue the first entry

E from
−→U ; Use window queries to check if objects in E

can be completely pruned away - if not, then go to Step
3.2.

Step 3.2 - Level-by-Level Pruning: For each remaining U , do
a level-by-level synchronous traversal among the local aR-
tree of U and the local aR-trees of the objects in PD(U)
to conduct a level-by-level pruning.

Step 3.3 - Compute pscore: For each remaining object U af-
ter Step 3.2,
– calculate the pscore(U);
– if pscore(U) > λk, then replace an object V in Tk

with pscore(V) = λk by U , and Update γk.

ENDWHILE
Return Tk.

While Steps 3.1 and 3.3 are relatively straightfor-
ward, Step 3.2 is critical in Algorithm 3; it can signif-
icantly speed-up the algorithm by avoiding as many ob-
jects as possible to enter into the expensive Step 3.3; our
experiment results demonstrate that our pruning tech-
niques can speed-up the computation by orders of mag-
nitude. We show the basic idea of our algorithm of Step
3.2 in Example 9. Suppose that E is an entry, at the ith
level, of the local aR-tree of U , let PD(E) denote the set
of entries at the ith level of the local aR-trees of other ob-
jects, which are partially dominated by E. #obj(PD(E))
denotes the number of distinct objects containing the en-
tries in PD(E), while FD(E) denotes the set of objects
fully dominated by E.

Example 9 In Figure 6, the 3 local aR-trees of U1, U2, and
U3 have 3 levels, respectively, with one intermediate level Ej

(∀1 ≤ j ≤ 9). Assume that λk = 1 and Step 3.2 is conducted
against U1.

U1

U2

U3

other objects
E4

E5

E6

E7

E8

E9

E1
E2

E3

Fig. 6 Level-by-level computation.

2 Note that if local aR-trees have different height, the one
that reaches the bottom level first will stay at the bottom,
while others traverse down to the lower levels.

Threshold-based Probabilistic Top-k Dominating Queries 9

Note that PD(U1) = {U2, U3} and FD(U1) = ∅. As
pscore+(U1) = |PD(U1)|+ |FD(U1)| ≥ λk, we expand U1,
U2, and U3 synchronously to the next level. The following is
immediate where each Ej (for 1 ≤ j ≤ 9) is at level 2.

– PD(E1) = {U2.(E5, E6)}3 and FD(E1) = {U3}. Note
that #obj(PD(E1)) = 1.

– PD(E2) = {U3.(E9)} and FD(E2) = ∅. Note that #obj
(PD(E2)) = 1.

– PD(E3) = ∅ and FD(E3) = ∅.
Since pscore+(E3)(, #obj(PD(E3)) + |FD(E3)|) = 0 (<

λk), we can exclude E3 from a further consideration. We only

need to check E1 and E2 by the following bounding-pruning

techniques to determine whether or not they need to be ex-

panded to the next level.

The key in Step 3 is to develop efficient and effective
bounding-pruning techniques for pruning purposes. They
will be conducted based on the following two principles.

1. probability-based: Efficiently and effectively com-
puting an upper-bound Pupper

≥λk
(U) of P≥λk

(U) so that
U can be pruned if Pupper

≥λk
(U) ≤ q.

2. score-based: Efficiently and effectively computing a
pscore+(U) such that U can be pruned if pscore+(U)
< λk.

4.3.1 Efficient and Effective Bounding Techniques

In Theorem 1, for each entry E, we use P≥λ(ıE ≺ (U −
U)i), multiplied by

∑
u∈E P (u), as an upper bound of

P≥λ(E). This takes O(λk × |PD(E)|) time for each en-
try E. To further speed-up the computation, the follow-
ing two upper-bounds of P≥λ(ıE ≺ (U − U)i) are devel-
oped; they reduce the costs from O(λk × |PD(E)|) to
O(|PD(E)|). This is significant when λk is large.
1. Chernoff-Hoeffding Bound based Upper-bound.
For an uncertain object V and an instance u in another
uncertain object U , we can regard the event that u dom-
inates V as a random variable. Consequently, we can
employ the probabilistic bounds to compute the upper
bound of the pscore of an uncertain object, which is very
time efficient. Due to the independence assumption, we
apply a strong version of Chernoff-Hoeffding Bound [16]
in the paper.
Chernoff-Hoeffding Bound [16]. Let X1, X2, X3, ...,
Xn be independent random variables with values in [0, 1],
X =

∑n
i=1 Xi and ε > 0. Then,

P (X > (1 + ε)E(X)) < exp−E(X)ε2/3 (8)

Recall ıE is the lower-left corner of an entry E. ıE par-
tially dominates l objects V1, V2, ... Vl. Since each Vi

(1 ≤ i ≤ l) is an uncertain object, the probability of ıE

3 Note that E6 is fully dominated by E1; consequently we
no longer need to expand E6 regarding E1 but just add P (E6)
to calculate the probabilities and scores of the children of E1.

dominating a Vi can be treated as the expected value of
the following random variable.

XVi =

{
1 if ıE dominates one instance of Vi

0 otherwise.
(9)

We can view the number of objects, dominated by ıE , as
the sum of following random variables.

XıE
= XV1 + XV2 + ... + XVl

(10)

Clearly, E(XVi
) = P (ıE ≺ Vi), and E(XıE

) =
∑l

i=1
P (ıE ≺ Vi). Since all Vis are mutually independent, we
can apply the above Chernoff-Hoeffding bound with ε =
(γ−E(XıE

))

E(XıE
) to get Lemma 1, where γ = γk − |FD(ıE)|

and |FD(ıE)| is the number of objects fully dominated
by ıE .
Lemma 1 If E(XıE

) < γ, then P≥γ(ıE ≺ (U −
U)i) ≤ exp

− (γ−E(XıE
))2

3E(XıE
) .

In our pruning technique, we will use exp
− (γ−E(XıE

))2

3E(XıE
)

as an upper-bound of P≥γ(ıE ≺ (U − U)i). This will
reduce the complexity of calculation from O(γ × l) to
O(l) when γ > E(XıE

). This is significant when γ is
large. Below, we present another upper-bound estimation
of P≥γ(ıE) when γ is relatively small — γ ≤ E(XıE

);
in this case, Chernoff-Hoeffding Bound does not yield
interesting results.
2. Bisection-based Upper-bound. Due to the above
limitation when applying the Chernoff-Hoeffding Bound
based Upper-Bound, we further develop a more general
Upper-Bound called Bisection-Based Upper-bound. Fol-
lowing theorem is the key to obtain this upper bound.
Without loss of generality, suppose that the l objects,
partially dominated by the lower-left corner ıE of an en-
try E, are sub-indexed such that P (ıE ≺ Ui) ≤ P (ıE ≺
Uj) if i < j. Let pi = P (ıE ≺ Ui) for 1 ≤ i ≤ l.
Theorem 2 Suppose that we replace pi by p∗i for 1 ≤
i ≤ l such that pi ≤ p∗i . Then, the probability that u
dominates at least λ objects (for 1 ≤ λ ≤ l) regarding
{pi : 1 ≤ i ≤ l} is not greater than that regarding {p∗i :
1 ≤ i ≤ l}.
Theorem 2 is quite intuitive, but the proof is lengthy.
Please refer to the appendix for the detailed proof.

Now, we can divide the probabilities of those par-
tially dominated objects (by ıE) into two groups G1 =
{p1, p2, ..., pj} and G2 = {pj+1, pj+2, ...pl} such that we
replace each probability value in G1 by pj and replace
each probability value in G2 by pl. The following Lemma
is immediate.
Lemma 2 Without loss of generality, we assume that
j ≤ (n− j), let y0 = max{0, λ− l + j}

P≥γ(ıE ≺ (U − U)i) ≤
j∑

y=y0

Cy
j py

j (1− pj)
j−y × (11)

(

l−j∑

x=λ−y

Cx
l−jp

x
l (1− pl)

l−j−x)

10 Wenjie Zhang et al.

Proof Suppose that the instance u dominates l objects

with the probabilities,
j︷ ︸︸ ︷

pj , pj · · · , pj ,
l−j︷ ︸︸ ︷

pl, pl, · · · , pl. It can
be immediately verified that the probability that ıE dom-
inates at least λ objects among these l objects is as what
is stated on the right hand-side of the inequality of (11).
The lemma immediately follows from Theorem 2. ¤

Lemma 2 states that we can bisect the set of partially
dominated objects into two groups such that in each
group, we use the largest probability value as a repre-
sentative. Then, we use the right-side part of the in-
equality in (11) as an upper-bound. Clearly, it can be
calculated in O(l) time if we accumulatively compute
the part,

∑l−j
x=λ−y Cx

l−jp
x
l (1− pl)l−j−x, from the tail.

The key to deliver a good upper-bound is to choose a
pj such that the value of upper-bound can be minimized.
This problem can be trivially solved in time O(l2) by
enumerating all possible cases; nevertheless, such costs
are even more expensive than the costs O(λ × l) of the
dynamic programming based algorithm to produce the
exact probability value.

In our computation, we choose the median to divide
the set into two groups. It is clear that the median can be
calculated in O(l) time [12]. Therefore, the whole com-
putation of upper-bound can be executed in time O(l).

Remark 1 It seems hard to find an efficient algorithm
with costs lower than O(λl) to divide l probability val-
ues into more than 2 groups; consequently we settle for
a bisection. The bisection-based upper-bound can also
be used in case when γ > E(XıE). However, our experi-
ments, in Section 6, demonstrate that the above Chernoff-
Hoeffding bound based upper-bound is tighter than the
bisection-based upper-bound. Therefore, in our imple-
mentation we only use the Chernoff-Hoeffding bound for
the case where γ > E(XıE

). These two bounds will be
used to calculate the upper-bounds of P≥λ(ıE ≺ (U −
U)i) in our level-by-level computation.

We also examined Markov’s inequality [20] and Cheby-
shev’s inequality [20]; the upper-bounds generated by
them are not as tight as the above two upper-bounds.

3. Utilizing Existing Computation Results. Below
we show two upper-bounds by utilizing the existing com-
putation results. One is dominating probability based,
while another is pscore based.

Theorem 3 Suppose that u is a point (or an instance
of U1) and u fully dominates an uncertain object, say,
U2. Then, P≥γ(u) ≥ P≥γ(U2) (∀γ ≥ 1).

The proof of Theorem 3 is quite lengthy and we leave it
to Appendix.

Note that Theorem 3 will be used to prune away ob-
jects, fully dominated by u, if P≥λ(u) < q. The following
Theorem is immediate.

Theorem 4 Suppose that a point u (partially or fully)
dominates λ′ objects in total, and u dominates the lower-
left corner of the MBB of an entry E of the local aR-tree
of an object U at the level i. Then, pscore+(E) ≤ λ′.

Note that in Theorem 4, level i = 1 means an object.

4.3.2 Effective Pruning Rules

The pruning rules below can be immediately verified
from the definitions; thus we omit the proofs.

Pruning Rule 1 Score-Based: ∀U , if pscore+(U) ≤
λk, then U can be excluded from the solution of PtopkQ.

Let L+
i (U) denote the subset of entries of Li(U) with the

property that ∀E ∈ L+
i (U), the captured Pupper

≥λk
(E) 6=

0. Based on equation (7), the following pruning rule is
immediate.

Pruning Rule 2 Level’s Probability-based: Suppose
that

∑
E∈L+

i (U) P≥λk
(E) ≤ q. Then, U can be excluded

from the solution of PtopkQ.

Note that when i = 1, L+
i (U) in Pruning Rule 2 only

contains the root entry: U .
In our computation if instances or entries in U are

found with 0 probability to dominate λk objects, we
mark and exclude them in further computation. For each
entry E of a local aR-tree, let I+

E denote the set of in-
stances each of which is not yet detected with 0 probabil-
ity to dominate at least λk objects, and P (I+

E) denotes
the sum of probabilities of instances in I+

E . The Pruning
Rule 3 below is also immediate if we make the upper-
bound of probability for an instance in I+

E to dominate
at least λk objects be 1.

Pruning Rule 3 Drilling-down based: At the level
i (for an i), if

∑
E∈L+

i (U) P (I+
E) < q, then U can be

excluded from the solution of PtopkQ.

Pruning rules 2 and 3 are fundemental to a level-by-level
computation (details in Section 4.3.3).

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

Fig. 7 Entry Distribution

U

Level 1

Level 2

Level 3

Level 4

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11 E12 E13 E14 E15

Fig. 8 Tree Structure Map

Remark 2 Note that in our level-by-level algorithm, an
I+

E may change when levels progress down. For instance,
regarding the example in Figures 7 and 8, E13 and E15

are initially detected with P≥λk
(E15) = 0 and P≥λk

(E13) = 0 because they are fully dominated by one point
that (partially or fully) dominates no more than the cur-
rent λk objects (formally stated in Theorem 4); conse-
quently, I+

E6
contains the instances contained by E12.

Threshold-based Probabilistic Top-k Dominating Queries 11

Nevertheless, once progress to level 2, we may find that
the total number of objects (fully or partially) dominated
by E6 is less than threshold λk; consequently, in I+

E6
we

replace E12 by ∅. Thus I+
E6

is empty.

4.3.3 Algorithm Details

Step 3.1. Objects corresponding to the centroids in an
entry E of the aR-tree on centroids may be spread to
different entries of the aR-tree on object MBBs.

Example 10 Regarding the centroids ω1, ω2, and ω3 in Fig-

ures 3, their corresponding objects U1, U2, and U3 are spread

to 2 entries in the local aR-tree on object MBBs.

In each entry E of the local aR-tree on object MBBs,
we record the lower left corner of the MBB encompassing
the objects that correspond to the contained centroids in
E, denoted by E . Note that E is not the lower left cor-
ner of E. Below is the algorithm presented in Algorithm
4.

Algorithm 4 Step 3.1
Description:
1: get pscore+(E);
2: if pscore+(E) ≤ λk (Pruning Rule 1) then
3: prune other objects dominated by E

4: else
5: if E is an object U then
6: record PD(U) and goto Step 3.2;
7: else
8: for each child E′ of E do
9: call Algorithm 4 regarding E′;

To compute pscore+(E) - an upper-bound of the
maximum number of objects (partially or fully) domi-
nated by an object in E, we use window query techniques
by the “half-open” window with E as the lower-left cor-
ner to probe the aR-tree on MBBs of objects and then
count the number of objects overlapping with the win-
dow as pscore+(E).

If the condition in line 2 holds, then objects corre-
sponding to the centroids in E will be excluded from a
further consideration. In this case, we can prune other
objects by ıE by using the above window to probe the
aR-tree of objects to get the objects fully dominated by
E . These objects will be removed from

−→U or from an en-
try in

−→U . Note that when objects removed from an entry
E of

−→U , we need to update E and the corresponding in-
formation in its descendants. Moreover, if an entry in the
aR-tree of objects is detected to be fully dominated by
E , then it is marked so that the entry can be skipped
when another E′ is used to prune away objects.

Example 11 In Step 3.1, suppose the current λk is 3. When

the entry containing ω7, ω8, and ω9 is selected, we use the

recorded lower-left corner (with this entry) of the MBB of

objects U7, U8, and U9 to do the window query on the aR-tree

of objects. The window query does not intersect any object.

Consequently, the entry containing ω7, ω8, and ω9 will be

removed from candidates, and U7, U8, and U9 are excluded

from the candidates of PtopkQ.

Remark 3 At the object level, we also use Pruning Rule
3 to check (line 2 of Algorithm 4) if an object should be
removed from the candidates of PtopkQ.

Step 3.2. For each remaining object U , we synchronously
traverse the local aR-trees of U and objects in PD(U)
level-by-level such that at each internal level i, we con-
duct the following two substeps.
Step 3.2a. Use Pruning Rule 3 to check if U should be

removed. If U cannot be removed, then go to Step
3.2b.

Step 3.2b. For each E ∈ L+
i (U), we compute PD(E)

and |FD(E)|. Then, based on Theorem 1 we use
Chernoff-Hoeffding bound based upper bound or Bi-
section based upper bound to bound P≥λ(ıE ≺ (U −
U)i), which is multiplied by

∑
u∈E P (u) to give an

upper bound Pupper
≥λk

(E) of P≥λk
(E). Then, we use

Pruning Rule 2 to check if U should be excluded or
goto the next level. Note that when applying Prun-
ing Rule 2, we replace P≥λk

(E) by min{Pupper
≥λk

(E),
P (I+

E)}.
To efficiently execute Pruning Rule 3, for each entry E we
record the summation p0(E) of occurrence probabilities
of detected instances that have 0 probability to dominate
at least λk objects. Once an entry E is detected to have
every instance with 0 probability dominating at least λk

objects, this information is propagated to all ancestors as
follows if E is the first time, (i.e. full(E) = 0), detected.
Let full(E) = 1 denote the situation that every instance
in E has already been detected to be with 0 probability
dominating at least λk objects.

Algorithm 5 Propagation to Ancestors
Description:
1: if full(E) = 0 then
2: full(E) = 1; p′ := p0(E); p0(E) := P (E);
3: for each ancestor E′ of E do
4: if full(E′) = 0 then
5: p0(E′) := p0(E′) + P (E)− p′;
6: if P (E′) = p0(E′) then
7: full(E′) = 1
8: else
9: Terminate

Example 12 Regarding the example in Figures 7 and 8, sup-
pose that E15 is detected to be fully dominated by a point
that has zero probability to dominate at least λk objects.
Then, P≥λk

(E15) = 0. Further suppose that each entry at
the bottom level has instances with the total probability
1/8. Thus, we record full(E15) = 1, P 0(E15) = P 0(E7) =
P 0(E3) = P 0(E1) = 1/8.

Assume that another such point is found to fully domi-

nate E3. Then, update full(E3) to be 1, and P 0(E3) = 1/2

and P 0(E1) = 1/2. If we find the third such point that

fully dominates E15, the search of E15 will stop at E3 since

full(E3) = 1.

12 Wenjie Zhang et al.

Remark 4 Once the lower-left corner ıE of an entry E
is detected to have 0 probability to dominate at least
λk objects, we use window query techniques to check if
entries from other objects are fully dominated by ıE . For
any entry fully dominated by ıE , we apply Algorithm 5
to propagate to ancestors of the entry. Moreover, when
an object is processed as a candidate in Step 3.2, we do
not need to expand its entries E with full(E) = 1.

Step 3.3. We use the dynamic programming method to
calculate pscore(U) as what is described in Step 2. Note
that when an instance u is detected P≥λk

(u) < q, we can
apply Theorem 3; that is, we do window queries, in the
same way as described in the above step, by excluding all
objects fully dominated by u, and update

−→
U accordingly.

5 Randomized Algorithm

The basic idea of our randomized algorithm is to sample
all possible worlds,

∏n
i=1 Ui from U = {Ui|1 ≤ i ≤ n},

by a small number m of possible worlds Si (1 ≤ i ≤ m),
where each Si consists of n instances - one instance per
object. An instance u homo-dominates another instance
v if u dominates v, and they are in one sample Si. Let
ui,j denote an instance in sample Si from object Uj .
pscorer(ui,j) is defined as the number of instances in
sample Si that are dominated by ui,j ; that is, the num-
ber of instances homo-dominated by ui,j . For 1 ≤ j ≤ n,
pscorer(Uj) is the (q ∗m)th largest in {pscorer(ui,j)|1 ≤
i ≤ m}.

G1 G2 G3 G4

G5 G6

root

Global Tree
U1

U2
U3

8

8

4

4

5

5

7

7

3

3

2

6
6

E1,1

E2,1

E3,1

E4,1

E5,1

E6,1

E1,2

E2,2

E3,2

E4,2

E5,2

E6,2

E1,3

E2,3

E3,3

E4,3

E5,3

E6,3

1

1 2

7
8

5
6

3

4

1
2

Fig. 9 Samples

Example 13 Regarding the example in Figure 9, suppose
that m = 8, k = 2, and q = 0.5. A circled number j in
object Ui means the sampled instance (from Ui) is in the
sample j. The pscorer of object U1 is 2. This is because that
the samples 1, 2, 3 and 4 homo-dominate two other samples
respectively (i.e. samples with the same sub-indexes) from U2

and U3, while samples 5, 6, 7, and 8 homo-dominate 1 sample,
respectively.

Similarly, we obtain that pscorer(U2) = 1 and pscorer(U3)

= 0. Therefore, Algorithm 6 returns U1 and U2 as the top-k

objects.

Below, Algorithm 6 outlines our randomized algorithm.
In Algorithm 6, Calculating-pscorer ({Si : 1 ≤ i ≤

m}, q) returns the k objects with the highest pscorers.
A naive way of Calculating-pscorer is to compute the
dominating number for each sampled instance in Si for

Algorithm 6 Randomized Algorithm
Input: {Si : 1 ≤ i ≤ m}; 0 < q ≤ 1.
Output: Tk : the k objects with the largest pscorer.
Description:
1: Tk := Calculating-pscorer ({Si : 1 ≤ i ≤ m}, q);
2: return Tk

1 ≤ i ≤ m; consequently, we need to perform such com-
putation m times if there are m samples. Our experi-
ments demonstrate such a naive algorithm is very expen-
sive, slow, and not scalable against m. Below, we present
a novel, efficient algorithm for Calculating-pscorer with
the aim to share the computation among samples and to
effectively prune away objects. First, we show an accu-
racy guarantee of the algorithm.

5.1 Accuracy Guarantee

For each object Uj , the events whether in sample Si,
the randomly selected instance ui,j dominates at least l
other instances may be described by the following totally
independent random variables.

X≥l,i,j =

{
1 if ui,j dominates at least l instances in Si

0 otherwise

Clearly, E(X≥l,i,j) =
∑

u∈Uj
P (u)P≥l(u) = P≥l(Uj). Let

X≥l,j =
∑m

i=1 X≥l,i,j

m
.

It is immediate that E(X≥l,j) = P≥l(Uj). Theorem 5 im-
mediately follows the Hoeffding’s inequality [20] (Theo-
rem 6).

Theorem 5 If m = O(1
ε2 log 1

δ) where 0 < δ, ε < 1, then
P (|X≥l,j − P≥l(Uj)| ≥ ε) < δ.

Theorem 6 Hoeffding’s Inequality: Suppose that Y1,
Y2, ... , Ym are independent random variables such that
0 ≤ Yi ≤ 1 for 1 ≤ i ≤ m. Let Y =

∑m
i=1 Yi. Then, we

have that:

P (Y − E(Y) ≥ εm) ≤ exp(−2ε2m) (12)
P (E(Y)− Y ≥ εm) ≤ exp(−2ε2m)

Theorem 5 implies that P≥l(Uj)−ε ≤ X≥l,j ≤ P≥l(Uj)+
ε with confidence 1− δ.

In our randomized algorithm — Algorithm 6, we use
Xl,j to approximately represent P≥l(Uj); consequently,
(q ∗m)th greatest number (pscorer(Uj)) of homo domi-
nated instances is used to approximately represent pscoreq

(Uj). Below is a theoretical guarantee of our randomized
algorithm.

Lemma 3 In Algorithm 6, suppose that we replace q by
(1−ε)q in Algorithm 6, replace ε by εq in Theorem 5, and
change m from O(1

ε2 log 1
δ) to O(1

ε2q2 log n
δ). Then the

top-k objects retrieved by Algorithm 6 have the following
properties with confidence 1−δ. For 1 ≤ i ≤ k (∀k ≤ n),

Threshold-based Probabilistic Top-k Dominating Queries 13

Property 1: the pscorer of the top ith object Ui is not
smaller than the pscore of the top ith object to PtopkQ
(regarding q);

Property 2: P≥pscorer (Ui) > (1− 2ε)q.

Proof It can be immediately verified that for each object
Ui,

Xpscorer(Ui)+1,i > (1− ε)q. (13)

Consequently, we have P≥pscorer(Ui)+1(Ui) ≤ q with very
small probability δ

n applying Theorem 5. The Property
1 immediate follows.

From Theorem 5, Property 2 immediately follows. ¤

Note that the sample size in Theorem 5 and Lemma
5 is irrelevant to the number of instances in an object;
thus, the randomized algorithm has a potential to sup-
port the applications where a large number of instances
is involved.

While Theorem 5 and Lemma 3 provide theoreti-
cal performance guarantee, our experiments demonstrate
that Algorithm 6 is quite accurate when m is up to 1000
and q, instead of (1− ε)q used in Algorithm 6.

5.2 Efficient Algorithm

We present an efficient algorithm to execute Calculating-
pscorer. It follows the framework of 3 Steps in Section 3,
Pre-ordering, Initial Computation, and Final Computa-
tion. We first present a novel data structure to replace
local aR-trees.
gCaR-tree. The sampled instances of each object are
organized into an R-tree like structure, gCaR-tree (Global
Constrained aR-tree). Different from a conventional R-
tree, n gCaR-trees for n objects (one gCaR-tree per ob-
ject) follow a global tree structure as follows.

Corresponding to each node Gi in the global tree,
for all 1 ≤ j, j′ ≤ n, entries Ei,j and Ei,j′ of
Uj and Uj′ contain the instances from the same
samples, respectively. For example, in Figure 9,
corresponding to G2, E2,1, E2,2, and E2,3 contain
the sampled instances from the samples 5 and 6,
respectively.

In a gCaR-tree, the number of sampled instances in each
entry is also recorded. Given a global tree structure, we
aim to minimize the sum of areas of gCaR-tree for all
uncertain objects. It can be immediately shown that this
optimization problem is NP-hard since a special case of
the problem (i.e., when n = 1) is the area minimization
problem of an R-tree which is NP-hard.

We build n gCaR-trees following the techniques of
building an R-tree except that we enforce the constraint
of a global tree structure as above. gCaR-trees have the
advantage that in level-by-level computation, only the
homo-dominating relationships among objects need to be

checked. An entry E (fully or partially) homo-dominates
another entry E′ if E and E′ correspond to the same
entry in the global tree and E (fully or partially) domi-
nates E′.4 Consequently, for each entry E we only need
to check one entry per object to determine if there is
a homo-dominating relationship. Thus, the total costs
to compute all entries, at the ith level of gCaR-trees,
homo-dominated by an entry in U takes O(n′) where n′

is the number of objects partially dominated by U . This
is much lower than O(N) in the exact algorithm where
N is the number of total entries at the ith level.

However, such a global constraint may also bring a
disadvantage — sizes of MBBs may be too large. Clearly,
traversing gCaR-trees from a parent E to a child E′ does
not bring much extra geometric information if the MBB
of E′ has a similar size to that of E. To resolve this,
we introduce a post-processing as follows while building
gCaR-trees.
Post-processing a gCaR-tree. We enforce the con-
straint that for each group Gi,

area(Gi)
area(Gp

i)
≤ ρ. (14)

Here, area(Gi) denotes the total area of the MBBs from
n gCaR-trees corresponding to Gi, while Gp

i denotes such
total area corresponding to the parent of Gi. If a Gi does
not satisfy the inequality (14), then we go to the chil-
dren of Gi and check the children of Gi one by one (still
against Gp

i), so on and so forth. Below is the algorithm.

Algorithm 7 gCaR post-processing
Input: n gCaR-trees; the root Gr of the gobal tree; 0 <

ρ ≤ 1.
Output: n gCaR-trees following the inequality (14).
Description:
1: Q := {children of Gr};
2: while Q 6= ∅ do
3: get a G from Q;
4: Q := Q− {G};
5: if area(G)

area(Gr)
< ρ then

6: if G is not children of Gr then
7: modify the global tree (thus n gCaR-trees) by us-

ing Gr as the parent of G;
8: call Algorithm 7 with G as the root if G is not a data

point;
9: else

10: add children of G to Q;

Example 14 In Figure 9, suppose that we choose ρ = 1/3.

G6 does not follow the inequality in line 5; thus we link the

root to G3 and G4 (thus, remove G6). However, G5 follows

the inequality; consequently G5 is used as the root to call

Algorithm 7. None of G1 and G2 follows the inequality (14).

Therefore, the final result is that in these three gCaR-trees,

the root has three children corresponding to G5, G3, and G4,

respectively; the next level contains all sampled instances.

4 in Figure 9, E6,1 fully homo-dominates E6,2 and E6,1 par-
tially homo-dominates E6,3.

14 Wenjie Zhang et al.

In our algorithm, those gCaR-trees are pre-computed.
We assign 1/4 to ρ since it leads to a very good perfor-
mance according to our initial experiments.
Calculating-pscorer. Our algorithm closely follows the
framework of the exact algorithm with the following mod-
ifications. Let λk denote the smallest pscorer value of the
current top-k candidates.
1: Pruning Rules.

For each object, we search for the (q ∗m)th greatest
homo-dominating number pscorer among the sampled
instances. Below are the pruning rules that we will use
in our randomized algorithm.

Pruning Rule 4 ∀U , if pscorer(U) ≤ λk, then U can
be excluded from the solution of PtopkQ.

Note that at the object level, we use the number of ob-
jects (totally or partially) dominated by U as an upper-
bound of pscorer(U) for applying Theorem 4. Let
M≤λk,Ui denote the number of sampled instances, from
Ui, with their pscorer ≤ λk, respectively.

Pruning Rule 5 An object Ui can be excluded from the
solution of PtopkQ (against the probability threshold q)
if M≤λk,Ui ≥ (1− q)×m + 1.

Note that Pruning rule 5 will be used to replace Pruning
Rules 2 and 3 in the exact algorithm.
2: Step 1 and 2 - Pre-ordering and Initial computation

While the Step 1 (pre-ordering objects) in our random-
ized algorithm is the same as Step 1 in the exact algo-
rithm, Step 2 for computing scores of the first k objects
is conducted differently. We need to compute pscorer for
each object instead of pscore. Below is the algorithm,
Algorithm 8, to calculate the pscorer for one object.

Algorithm 8 Calculating pscorer

Input: U ; PD(U); FD(U); 0 < q ≤ 1; m samples.
Output: pscorer of U ;
Description:
1: for each sampled u ∈ U do
2: compute pscorer(u) against PD(U);
3: δ := the (q ×m)th largest value of pscorer(u);
4: pscorer(U) := |FD(U)|+ δ;

Note that the computation of pscorer(u) (∀u ∈ U) is
conducted within the sample that u belongs to. We in-
crementally maintain a min-heap [12] against the current
top-(q ×m) instances (i.e., with the largest pscorers) or
a max-heap against the current bottom-[(1 − q)m + 1]
objects depending on whether q ≤ 0.5. Clearly, Algo-
rithm 8 runs in time O(m|PD(U)| + m log(q ∗ m)) for
each object U .
3: Step 3 - Final Computation.

In this step, we use the same bounding-pruning-refining
framework as in the exact algorithm by effectively using
the following Theorem 7 in combination with Pruning
Rules 4 and 5. Let νi,j denote the largest number of

instances homo-dominated by an instance contained by
an entry Ei,j of a gCaR-tree of object Uj . For example,
regarding the example in Figure 9, ν6,1 = 2.

Theorem 7 Suppose that an Ei,j fully homo-dominates
l1 entries and partially homo-dominates l2 entries. Fur-
ther suppose that ıEi,j dominates ıEi,j′ . Then,

1. νi,j ≤ l1 + l2,
2. νi,j′ ≤ l1 + l2.

Theorem 7 is immediately based on the definitions, and
is used in level-by-level computation. Below we present
our algorithm details. It also consists of 3 steps: Step 3.1,
Step 3.2, and Step 3.3.

Step 3.1: pruning at the object level. It is the same
as Step 3.1 in the exact computation (Algorithm 4).

Step 3.2: level-by-level pruning. The basic idea is
to synchronously traverse the gCaR-trees of a Uj and
the uncertain objects in PD(Uj). For an object Uj , let
L+

κ (Uj) denote the set of entries at the κ level of the
gCaR-tree such that for each entry Ei,j in L+

κ (Uj), µi,j is
not captured less than λk. In our algorithm, we initialize
each object Uj by assigning 0 to M≤λk,Uj and the root
entry of Uj to L+

1 (Uj). The step proceeds as follows for
each remaining object Uj .

At each level κ, for every entry Ei,j in L+
κ (Uj) we

compute l1 and l2. If l1+ l2 ≥ λk, we add the child
entries, which are not marked out, of Ei,j to L+

κ+1(Uj)
for the computation at the next level.

Otherwise (l1 + l2 ≤ λk), according to Theorem 7 we
do the following two things.

1. For every entry Ei,j′ (∀Uj′ ∈ PD(Uj)) such that Uj′

has not been processed in Step 3 and Ei,j′ is not
marked out, if ıEi,j ≺ ıEi,j′ , M≤λk,Uj′ = M≤λk,Uj′ +
ai,j′ .5 Uj′ will be marked out for further consideration
if the updated M≤λk,U ′j ≥ (1− q)×m + 1 (Pruning
Rule 5). In case that Uj′ cannot be excluded, Ei,j′ is
marked out by using Algorithm 5; that is, it will not
be considered while processing Uj′ .

2. Update M≤λk,Uj to M≤λk,Uj + ai,j . Then exclude
Uj from the result set if M≤λk,Uj ≥ (1− q)×m + 1
(Pruning Rule 5).

If Uj is not pruned in Step 3.2, then we invoke Step 3.3.

Step 3.3: final computation. At the leaf level, for
all instances in the remaining entries of Uj we compute
their actual values of pscorer and return the (q ×m)th
largest value as pscorer(Uj). If pscorer(Uj) > λk, then
we replace the object with the smallest psocrer (i.e., λk)
among the current top-k objects by Uj and update λk.

5 To avoid to over-count already marked-out entries, ai,j′
is the number of instances in the subentries of Ei,j′ that have
not been marked out. To efficiently record such ai,j′ for each
entry, we apply Algorithm 5.

Threshold-based Probabilistic Top-k Dominating Queries 15

10-1

100

101

102

103

A-U A-Z I-U I-Z NBA

P
ro

ce
ss

in
g

T
im

e
(s

)

20.9

2.0

8.7

1.2

16.5

1.1

13.4

1.2

362.5

2.3

EXACT
RAND

(a) Varying datasets

 0

 100

 200

 300

 400

0.04 0.08 0.12 0.16 0.20

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(b) Varying h

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(c) Varying k

 0

 10

 20

 30

 40

0.6 0.7 0.8 0.9 0.95

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(d) Varying q

 0

 5

 10

 15

 20

 25

 30

 35

2d 3d 4d 5d

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(e)Varying d

100

101

102

103

400 600 800 1000 2000

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

(f) Varying M
 0

 2

 4

 6

 8

1000 1500 2000 2500

P
ro

ce
ss

in
g

T
im

e
(s

)

RAND

(g) Varying S

 0

 100

 200

 300

10k 20k 30k 40k 50k

P
ro

ce
ss

in
g

T
im

e
(s

)

EXACT
RAND

(h) Varying #objects

Fig. 10 Runtime with respect to different parameters.

6 Experimental Study

In this section, we present a thorough performance evalu-
ation of the efficiency and effectiveness of our algorithms.
All algorithms are implemented in C++. Experiments
are run on PCs with Intel P4 2.8GHz CPU and 2G mem-
ory under Debian Linux.

We refer to the exact algorithm in Section 4 as EX-
ACT, and to the randomized algorithm in Section 5 as
RAND.

Two types of datasets are used in our evaluation pro-
cess.

Real dataset is extracted from NBA players’ game-by-
game statistics (http://www.nba.com), containing 339,721
records of 1,313 players. Performance of a player is treated
as an uncertain object and the statistics of a player in
a single game is treated as an instance of an uncertain
object. For one player, all instances are assumed to take
the same probability to appear. In our experiment, we
use three attributes, points, assistances, and rebounds
in an instance. Since larger values of those attributes are
preferred, we adopt the corresponding negative values6.

Synthetic datasets are generated using methodologies
in [6] with respect to the following parameters. Dimen-
sionality varies from 2 to 5 with default value 3. Data
domain along each dimension is [0, 1]. Number of ob-
jects varies from 10, 000 to 50, 000 where default value
is 10, 000. Number of instances per object follows a
uniform distribution in [1, M] where M changes from
400 to 2, 000 with the default value 400. Each MBB to
bound an uncertain object is a hype-cube; and the av-
erage edge length of MBB of uncertain objects follows a
normal distribution in the range [0,h] with the expecta-
tion value h/2 and standard deviation 0.025; the default
value of h is 0.04 — 4% of the edge length of the whole

6 Note that there might be correlations among the player
statistics. We ignore the correlations so that NBA data can
be used to test efficiency and effectiveness of our techniques.

data space. The value k in PtopkQ varies from 10 to 50
with default value 10. As for randomized algorithm, sam-
ple size varies from 1000 to 2, 500. Table 4 summarizes
parameter ranges and default values (in bold font). Note
that in the default setting, the total number of instances
is about 2 millions.

Instances of an object follow either uniform (ran-
dom) or zipf distribution. In uniform distribution, in-
stances are distributed uniformly inside the uncertain
range with the same occurrence probability. In zipf dis-
tribution, firstly an instance u is randomly generated and
the distances from all other instances to u follow a zipf
distribution with z = 0.5. The occurrence probability for
each instance also follows zipf distribution with z = 0.2.

Centers of objects (objects’ MBBs) follow either anti-
correlated or independent distribution. So, in all we have
four types of synthetic datasets combining object centers
and instances distribution: Anti-Uniform, Inde-Uniform,
Anti-Zipf and Inde-Zipf. These are abbreviated to A-U,
I-U, A-Z, and I-Z in our experiment reports.

dimensionality d 2, 3, 4, 5

number of objects 10k, 20k, 30k, 40k, 50k

edge length h 0.04, 0.08, 0.12, 0.16, 0.20

number of instances M 400, 600, 800, 1k, 2k

k 10, 20, 30, 40, 50

q 0.6, 0.7, 0.8, 0.9, 0.95

sample size S 1k, 1.5k, 2k, 2.5k

data types A-U, A-Z, I-U, I-Z, NBA

Table 4 Parameter values.

6.1 Efficiency Evaluation

We evaluate our algorithms against the parameters in
Table 4.

Overall Performance. Figure 10(a) reports the result
of our performance evaluation over synthetic (with the

16 Wenjie Zhang et al.

default setting) and real datasets. The experiment demon-
strates that while EXACT is very efficient against var-
ious synthetic datasets with the default setting, it is
slower against the NBA dataset. This is because in the
NBA dataset, MBB sizes are large relative to the whole
data space; this gives a very high overlapping degree
among objects’ MBBs. On the other hand, RAND very
effectively deals with such situation. RAND has a very
steady performance and is at least 10 times faster than
EXACT against all these datasets. We run the trivial
exact algorithm as discussed in Section 2.3; that is, com-
pute pscore for each object and then choose the top-
k. Our experiment results show that it is about 100
times slower than EXACT. We also implement the triv-
ial randomized algorithm as discussed in Section 5; that
is, compute pscorer for each instance in a sample. The
costs are 1589(s), 1543(s), 3081(s), 3376(s), and 115(s),
respectively; it increases to 6685(s) when 2500 samples
are used. Consequently we omit the evaluation of both
trivial algorithms in the rest of our experiments. Note
that the trivial randomized algorithm runs fast against
NBA data; this is because NBA data only have about
1000 objects.

Varying MBB sizes, k and q. Figure 10(b) reports
our second experiment results, against synthetic datasets
with different average MBB sizes. Figure 10(c) reports
our performance evaluation against different k values.
While the costs of EXACT linearly increase when k in-
creases, the performance of RAND is quite steady. This is
because that the costs of computing the scores, pscorer,
for objects in RAND are no longer as dominant as that
in EXACT. The experiment results, depicted in Figure
10(d), show the impact from different q values is quite
minor.

Varying other parameters. Figures 10(e) - (g) report
the possible impacts against dimensionality, average in-
stance numbers, and average sample size. It is interesting
to note that the costs of EXACT generally increase with
the increment of dimensionality but the costs in 3d are
slightly less than that in 2d; this is because the ratio of
average MBB volume against the data space decreases
with the increment of dimensionality. Nevertheless, the
experiment demonstrates that an increment of dimen-
sionality plays a dominant role in the costs from 3d.

The impact of the number of objects is plotted
in Figure 10(h). Although the processing time of two
algorithms both increases as more uncertain objects are
involved, RAND has overall better performance and also
degrades much more slowly than EXACT.
Accessing order. In order to evaluate the effectiveness
of the objects accessing order in Section 4.1, we also im-
plement another version of the exact algorithm, named
EXACTNORD, in which the objects are accessed with
a random order. We evaluate the processing time as well
as the number of node access of two algorithms with k
varying from 10 to 50 in Figure 11. As depicted in Fig-

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

) EXACTNORD
EXACT

(a) Processing Time vs k

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50

no

de
 a

cc
es

s
(M

)

EXACTNORD
EXACT

(b) # Node Access vs k

Fig. 11 Performance vs diff. object access orders

ure 11(a), the accessing order plays an important role for
the computation as the EXACT algorithm significantly
outperforms the EXACTNORD. We also use the warm-
buffer paradigm to run our algorithms to evaluate I/O
costs. In Figure 11(b), we record the number of node ac-
cess for the aR-Trees of the uncertain objects during the
computation. As expected, the number of node access of
EXACT Algorithms is much less than that of EXACT-
NORD.

 0

 0.05

 0.1

 0.15

 0.2

10 20 30 40 50

E
rr

or

Bisection
Chernoff-Hoeffding

(a) Varying k

 0

 0.05

 0.1

 0.15

 0.2

0.6 0.7 0.8 0.9 0.95

E
rr

or

Bisection
Chernoff-Hoeffding

(b) Varying q

Fig. 12 Chernoff-Hoeffding based vs Bisection based

6.2 Pruning Powers

Chernoff-Hoeffding vs Bisection. We first evaluate
the effectiveness of the Chernoff-Hoeffding-bound based
upper bound and the Bisection-based upper bound. The
experiment is conducted against the real data - NBA
dataset. In our experiment, we first vary k values and
then vary q values. We record the average value of

Pupper
≥λk

(U)− P≥λk
(U)

during query processing where P≥λk
(U) is the actual

probability and Pupper
≥λk

(U) represents the Chernoff-
Hoeffding-bound based upper bound and the Bisection-
based upper bound, respectively. Note that for a fair
comparison, we only record such average for the Bisection-
based upper bounds when Chernoff-Hoeffding Bound based
upper bound can be used. The results are reported in
Figure 12(a) and Figure 12(b). They demonstrate that
the Chernoff-Hoeffding Bound based upper bound is tighter
than the Bisection-based upper bound. This is the reason
that in our algorithm, we employ the Chernoff-Hoeffding
Bound based upper bound whenever applicable.

Various Pruning Techniques. Figures 13 and 14
report our evaluation of the effectiveness of the pruning

Threshold-based Probabilistic Top-k Dominating Queries 17

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

) NoPruning
D

DS
DSP

Fig. 13 Varying k

 0

 20

 40

 60

 80

 100

 120

 140

0.6 0.7 0.8 0.9 0.95
P

ro
ce

ss
in

g
T

im
e

(s
) NoPruning

D
DS

DSP

Fig. 14 Varying q

0%

1%

2%

3%

4%

5%

2 3 4 5

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(a) Varying d

0%

1%

2%

3%

4%

5%

10 20 30 40 50

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(b) Varying k

0%

5%

10%

15%

0.04 0.08 0.12 0.16 0.20

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(c) Varying h

0%

1%

2%

3%

4%

5%

10k 20k 30k 40k 50k

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(d) Varying n

0%

1%

2%

3%

4%

5%

0.6 0.7 0.8 0.9 0.95

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(e) Varying q

Fig. 15 Node calculated ratio with respect to different pa-
rameters.

rules presented in the paper with various k values and
q values, respectively. NoPruning denotes the exact al-
gorithm without applying any pruning rules in Section
4.3.2 at the instance levels, D denotes that we apply the
Drill-down-based pruning rule, DS denotes that we apply
the Drill-down-based pruning rule and the Score based
pruning rule at each level, and DSP denotes that we ap-
ply Level’s Probability-based pruning rule (i.e. Chernoff-
Hoeffding Bound based upper-bound and the Bisection-
based upper-bound) each level in addition to DS. They
demonstrate that an application of the Drill-down-based
pruning rule alone does not improve much efficiency since
it basically still functions at the object level. While com-
bining with level-by-level score based pruning rule does
improve efficiency noticeably, adding Chernoff-Hoeffding
Bound based upper-bound and the Bisection-based upper-
bound significantly improves the performance. This is
because the computation costs at each level are signif-
icantly reduced by using those upper-bounds and the
upper-bounds are tight. Note that NoPruning is basically
the combination of the techniques in [43] and techniques
in [22,42] on the top of our pre-ordering techniques.

Effectiveness. We report our performance evaluation
of pruning power of EXACT and RAND in Figure 15
against dimensionality, k values, edge lengths, object num-
bers, and q values. The experiment is conducted against
syntectic data in order to evaluate all possible impacts.
We record “early pruned object ratio” - the ratio of the
number of objects, with entries of local aR-trees accessed
from the 2nd level onwards, over the total number of ob-
jects. Our evaluation reports that the exact algorithm
has a very powerful set of pruning techniques and up to
97% of objects have been pruned from the candidate sets
even when MBB is large.

6.3 Accuracy Evaluation

We evaluate possible impacts of different parameters on
the accuracy of RAND. Evaluation is based on average
relative errors for a retrieved object’s dominating proba-
bility with its pscorer computed using RAND regarding
a given threshold q. We use the following relative error
metrics to evaluate the ability of RAND to meet a given
threshold q. Without loss of generality, Ui denotes the
top-ith object returned by RAND.

errp
i =

{
0 if P≥pscorer(Ui) ≥ q
|P≥pscorer (Ui)−q|

q otherwise.

Figure 16 reports our performance evaluation, regarding
the average relative error (

∑k
i=1 errp

i

k), against data types,
number of objects, k values, q values, different average
MBB sizes, dimensionality, and sample sizes. Our exper-
iment results demonstrate that when sample size reaches
1000, the relative error is already very small. Moreover,
the accuracy is not quite related to the dimensionality,
object number, k values, or MBB sizes. Nevertheless, the
accuracy decreases when q gets smaller; this is because
when q is smaller, RAND requires more samples to retain
the same accuracy according to our theoretic results in
Section 5. It also shows that the accuracy increases when
the sample size increases.

We also evaluate the accuracy in the top-k scores
output by RAND using the average relative error metrics
-

∑k
i=1 errl

i

k where

errl
i =

{
0 if P≥pscorer (Ui) ≥ pscorei
|pscorer(Ui)−pscorei|

pscorei
otherwise.

As demonstrated in Figure 17, the performance of RAND
is very accurate - the average relative error is less than
0.4%. It is interesting to note that such accuracy is not
quite related to these parameters.

6.4 Summary

Both of EXACT and RAND are efficient when k is not
very large (a typical case for a top-k query), the average

18 Wenjie Zhang et al.

 0

 0.01

 0.02

 0.03

A-U A-Z I-U I-Z NBA

R
el

at
iv

e
E

rr
or

(a) Varying dataset

 0

 0.01

 0.02

 0.03

10k 20k 30k 40k 50k

R
el

at
iv

e
E

rr
or

(b) Varying n

 0

 0.01

 0.02

 0.03

10 20 30 40 50

R
el

at
iv

e
E

rr
or

(c) Varying k

 0

 0.01

 0.02

 0.03

0.6 0.7 0.8 0.9 0.95

R
el

at
iv

e
E

rr
or

(d) Varying q

 0

 0.01

 0.02

 0.03

0.04 0.08 0.12 0.16 0.20

R
el

at
iv

e
E

rr
or

(e) Varying h

 0

 0.01

 0.02

 0.03

2 3 4 5

R
el

at
iv

e
E

rr
or

(f) Varying d

 0

 0.01

 0.02

 0.03

500 1k 1.5k 2k 2.5k
R

el
at

iv
e

E
rr

or

(g) Varying S

Fig. 16 Relative error with respect to different parameters

 0

 0.002

 0.004

A-U A-Z I-U I-Z NBA

R
el

at
iv

e
E

rr
or

(a) Varying dataset

 0

 0.002

 0.004

10k 20k 30k 40k 50k

R
el

at
iv

e
E

rr
or

(b) Varying n

 0

 0.002

 0.004

10 20 30 40 50

R
el

at
iv

e
E

rr
or

(c) Varying k

 0

 0.002

 0.004

0.6 0.7 0.8 0.9 0.95

R
el

at
iv

e
E

rr
or

(d) Varying q

 0

 0.002

 0.004

0.04 0.08 0.12 0.16 0.20

R
el

at
iv

e
E

rr
or

(e) Varying h

 0

 0.002

 0.004

2 3 4 5

R
el

at
iv

e
E

rr
or

(f) Varying d

 0

 0.002

 0.004

500 1k 1.5k 2k 2.5k

R
el

at
iv

e
E

rr
or

(g) Varying S

Fig. 17 Relative error of score with respect to different parameters

MBB size of uncertain objects is reasonable (say, upto
20% of the edge length of the data space), and the to-
tal data size is about a few millions. Nevertheless, our
randomized algorithm is much more efficient and is also
very scalable against dimensionality, k values, data sizes,
and object MBB sizes; it is also highly accurate when the
sample size reaches 1000.

7 Discussions

The techniques developed in this paper can be immedi-
ately used to the second model of the problem of top-k

probabilistic dominating queries; that is, given a thresh-
old l and a set of uncertain objects U , find k uncertain
objects with the highest P≥l(U) where each U ∈ U and
ties are broken arbitrarily. Recall that P≥l(U) denotes
the probability of U dominating at least l other uncer-
tain objects. We can redefine the pscore of an uncer-
tain object U as P≥l(U). All of the upper bound tech-
niques and pruning rules in the exact algorithm can be
immediately applied. For instance, any uncertain objects
with Pupper

≥l ≤ qk can be pruned during the computation
where qk denotes the minimal pscore of current top-k
uncertain objects. Regarding the random algorithm, we

Threshold-based Probabilistic Top-k Dominating Queries 19

redefine pscorer of an uncertain object U as ml(U)
m where

m denotes the total number of sampled possible worlds
and ml represents the number of sampled possible worlds
in which U dominates at least l other objects. Then, the
gCaR-tree and pruning techniques in the random algo-
rithm can be immediately applied as well.

In many applications, the instances of uncertain ob-
jects might be correlated with each other. While exact
algorithms may be very expensive in processing correla-
tions among a large number of objects, we can draw the
sampled possible worlds from the correlated data with
Markov Chain Monte Carlo(MCMC) methods [19], in-
cluding several sampling techniques. For instance, the
Gibbs sampler can be employed when the univariate con-
ditional distributions of the uncertain objects are avail-
able. Then our random algorithm can be immediately
applied to the sampled possible worlds. Moreover, the ac-
curacy guarantee in the paper holds as long as the sam-
pled possible worlds are independent with each other.
However, because of the independence assumption, it is
non-trivial to extend our exact algorithm to tackle the
problem against dataset with correlations. As a possi-
ble future work, we will consider to develop efficient ex-
act algorithm based on the graph model [38,15] which
can effectively capture the correlations of the uncertain
dataset.

8 Related Work

Top-k Dominating Query in Multi-Dimensional
Space. It is firstly investigated by Papadias et al in
[33] as a variation of skyline queries. To enhance the
efficiency, Yiu and Mamoulis [43] propose two tech-
niques based on aR-tree index structure, counting-guided
search, and priority-based traversal. The k-dominant sky-
line query is studied by Chan et al [8] where skylines in
a k-dimensional subspace is retrieved.
Uncertain Data Management. Considerable research
effort has been put into modeling and managing uncer-
tain data in recent years due to many emerging appli-
cations. Sarma et al [36] models uncertain data using
possible world semantics and a prototype of uncertain
data management system, Trio, is developed by the Stan-
ford Info Lab [2]. Many general issues in modelling and
managing uncertain data have been addressed in [2,3].
Managing correlated uncertain data is investigated by
Sen and Deshpande in [37]. Very recently Dalvi and Su-
ciu [14] have shown that the problem of evaluating con-
junctive probabilistic queries is either PTIME or #P -
complete.

A number of problems in querying uncertain data
have also been studied, such as indexing [41], similarity
join [26], nearest neighbor query [27], skyline query [34],
clustering [28,30], etc.
Top-k Query Processing over Uncertain Data. Top-
k query is important in analyzing uncertain data since it

captures the inherent imprecise nature of data. Unlike a
top-k query over certain data which returns the k best al-
ternatives according to a ranking function, a top-k query
against uncertain data has inherently more sophisticated
semantics. Soliman et al [39] first relate top-k queries
with uncertain data. They define two types of important
queries - U -Topk and U -kRank, as well as develop novel
techniques to approach them. Based on novel observa-
tions, Yi et al [42] significantly improve the efficiency.
Hua et al [22] investigate the problem of threshold-based
probabilistic top-k uncertain objects. Re et al [35] deal
with query evaluation on probabilistic database and re-
sults are ranked according to the probability of satisfying
a given query.

To the best of our knowledge, the work presented
in this paper is the first one to study top-k dominating
queries in uncertain semantics. While the techniques in
[43] and the techniques in [23,42] are applicable, our ex-
periments demonstrate that the combination of them is
much slower than our techniques even with the help of
our pre-ordering technique.

9 Conclusion

In this paper, we formally define a probabilistic thresh-
old top-k dominating query. To process such a query, we
firstly propose an exact algorithm. The exact algorithm
utilizes novel and efficient pruning techniques based on
novel mathematic characterizations. While fairly efficient,
it is quite sensitive to sizes of data set, uncertain ob-
ject sizes, k values, etc. To trade-off between efficiency
and accuracy, a randomized algorithm with an accuracy
guarantee is proposed together with a new data struc-
ture, gCaR-tree; it is much more efficient than the exact
algorithm. The efficiency and effectiveness of these two
algorithms are extensively investigated in experimental
study.

Note that our algorithms are main memory based. It
can be immediately extended to external memory com-
putation using warm buffer; that is, keep things in the
buffer and use a buffer replacement policy once it is full.
We have evaluated the I/O costs for such a paradigm.
Moreover, our techniques developed in the paper can be
immediately extended to cover the dual problem. That
is, given a threshold about the number of objects to be
dominated, find top-k objects with the maximum dom-
inating probabilities. Finally, our randomized algorithm
can also be immediately extended to continuous cases by
sampling PDFs using Monte Carlo sampling [25]. As a
possible future work, we will deal with the correlations
among objects as discussed in Section 7.

Acknowledgement. We would like to thank the anony-
mous reviewers for their efforts and valuable comments
to help us to improve the presentation of the paper. The
work of Xuemin Lin is supported by Australian Research

20 Wenjie Zhang et al.

Council Discovery Grants (DP0987557, DP0881035 and
DP0666428) and Google Research Award. Wei Wang’s
research is supported by ARC Discovery Grants DP0987273
and DP0881779. Jian Pei’s research is supported in part
by a NSERC Discovery grant and a NSERC Discovery
Accelerator Supplement grant.

References

1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the rep-
resentation and querying sets of possible worlds. In SIG-
MOD 1987.

2. P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom. Trio: a system for
data, uncertainty, and lineage. In VLDB 2006.

3. L. Antova, C. Koch, and D. Olteanu. 10106
worlds and

beyond: Efficient representation and processing of incom-
plete information. In ICDE 2007.

4. D. Barbara, H. Garcia-Molina, and D. Porter. The man-
agement of probabilistic data. IEEE TKDE, 4(5):487–
502, 1992.

5. G. Bekales, M. A. Soliman, and I. F. Ilyas. Efficient
search for the top-k probable nearest neighbors in uncer-
tain databases. In VLDB 2008.

6. S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE 2001.

7. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient pro-
cessing of spatial joins using r-trees. In SIGMOD 1993.

8. C. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and
Z. Zhang. Finding k-dominant skylines in high dimen-
sional space. In SIGMOD 2006.

9. R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow.
Probabilistic verifiers: Evaluating constrained nearest-
neighbor queries over uncertain data. In ICDE 2008.

10. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluat-
ing probabilistic queries over imprecise data. In SIGMOD
2003.

11. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vit-
ter. Efficient indexing methods for probabilistic threshold
queries over uncertain data. In VLDB 2004.

12. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms 2nd Edition. The MIT Press,
2001.

13. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB 2004.

14. N. Dalvi and D. Suciu. Management of probabilistic data:
foundations and challenges. In PODS 2007.

15. N. N. Dalvi and D. Suciu. Management of probabilistic
data: foundations and challenges. In PODS, 2007.

16. D. Dubhashi and A. Panconesi. Concentration
of measure for the analysis of randomised algo-
rithms, page 12. http://citeseer.ist.psu.edu/old/ dub-
hashi98concentration.html, 1998.

17. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In KDD, 1996.

18. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. JCSS, 66:614–656, 2003.

19. W. Gilks, S. Richardson, and D. Spiegelhalter. Markov
chain Monte Carlo in practice. Chapman & Hall, 1996.

20. O. Goldreich. Randomized Meth-
ods in Computation, Lecture 2.
http://www.wisdom.weizmann.ac.il/˜oded/rnd.html,
2001.

21. A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD 1984.

22. M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries
on uncertain data: A probabilistic threshold approach. In
SIGMOD 2008.

23. M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries
on uncertain data: a probabilistic threshold approach. In
SIGMOD, 2008.

24. T. Imielinski and W. Lipski. Incomplete information in
relational databases. JACM, 31(4), 1984.

25. M. H. Kalos and P. A. Whitlock. Monte Carlo Methods.
Wiley Interscience, 1986.

26. H. P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. Prob-
abilistic similarity join on uncertain data. In DASFAA
2006.

27. H. P. Kriegel, P. Kunath, and M. Renz. Probabilistic
nearest-neighbor query on uncertain objects. DASFAA
2007.

28. H. P. Kriegel and M. Pfeifle. Density-based clustering of
uncertain data. In KDD 2005.

29. L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Sub-
rahmanian. Probview: a flexible probabilistic database
system. ACM TODS, 22(3):419–469, 1997.

30. W. K. Ngai, B. Kao, C. K. C. R. Cheng, M. Chau, and
K. Y. Yip. Efficient clustering of uncertain data. In
ICDM 2006.

31. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient
olap operations in spatial data warehouses. In SSTD
2001.

32. D. Papadias, N. Mamoulis, and Y. Theodoridis. Pro-
cessing and optimization of multiway spatial joins using
R-trees. In PODS 1999.

33. D. Papadias, Y. Tao, F. Greg, and B. Seeger. Progressive
skyline computation in database systems. ACM TODS,
30(1):41–82, 2003.

34. J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic sky-
line on uncertain data. In VLDB 2007.

35. C. Re, N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. In ICDE 2007.

36. A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE 2005.

37. P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE
2007.

38. P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE,
2007.

39. M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k query
processing in uncertain databases. In ICDE 2007.

40. K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In VLDB 2001.

41. Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain data
with arbitrary probability density functions. VLDB 2005.

42. K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient
processing of top-k queries in uncertain databases with x-
relations. IEEE Trans. Knowl. Data Eng., 20(12):1669–
1682, 2008.

43. M. L. Yiu and N. Mamoulis. Efficient processing of top-k
dominating queries on multi-dimensional data. In VLDB
2007.

A Appendix: PROOFS of THEOREMS

A.1 Proof of Theorem 2

Proof We use the possible world semantics to prove the the-
orem. Without loss of generality, we assume that there are n
objects where u does not dominate any instance from Ui for
l + 1 ≤ i ≤ n. For each uncertain object Ui with 1 ≤ i ≤ l,

Threshold-based Probabilistic Top-k Dominating Queries 21

we divide its instances into 2 groups Ui,1 and Ui,2 such that
the instances in Ui,1 are all dominated by u and none of the
instances in Ui,2 is dominated by u. Clearly, Pr(Ui,1) = pi

and Pr(Ui,2) = (1− pi) for 1 ≤ i ≤ l.
It can be immediately verified that the possible worlds in

each of which u dominates at least λ instances from different
objects can be expressed by the union of the following spaces.

Ω≥λ =
⋃

follows Condition λ

(

l∏
i=1

δi ×
n∏

i=l+1

Un) (15)

Here, Condition λ includes that for 1 ≤ i ≤ l, δi ∈ {Ui,1, Ui,2}
and there are at least λ δis with the form of Ui,1. Clearly,

Pr(Ω≥λ) =
∑

Condition λ

(

l∏
i=1

Pr(δi)×
n∏

i=l+1

Pr(Ui))

Now if we modify each instance in Ui,2 (for 1 ≤ i ≤ l)
by adding one instance at the position of MBB+.Ui with
the occurrence probability (p∗i − pi) and totally reduce the
probabilities of the instances in the original Ui,2 by (p∗i − pi);
clearly, the total probabilities of Ui,2 remain unchanged. It
can be immediately verified that each possible world from
(15) correspond to a possible world after such a modification
that dominates at least λ instances from different objects. ¤

A.2 Proof of Theorem 3

Proof We prove this theorem using the possible world seman-
tics. There are two cases: case 1) u is not an instance of any
object, and case 2) u is an instance of the object U1.

Theorem 3 holds trivially for case 1) since in any possible
world where an instance v ∈ V dominates at least λ other
instances, u always dominates at least λ + 1 instances.

Regarding case 2), for each v ∈ U2 let ΩU−U1−U2
≥λ,v

(ΩU−U1−U2
≥λ−1,v) denote the subset of possible worlds from

∏n
i=3 Ui

such that v dominates at least λ (λ−1) instances in each pos-
sible world. We use U1,1,v to denote the set of instances of
U1, dominated by v, and U1,2,v denotes the set of instances
of U1, not dominated by v.

Consequently, all the possible worlds where an instance
v ∈ U2 dominates at least λ other instances can be repre-
sented below.

Ωv = (U1,2,v × v ×ΩU−U1−U2
≥λ,v) ∪ (U1,1,v × v ×ΩU−U1−U2

≥λ−1,v)

Clearly, Pr(U1,2,v) + Pr(U1,1,v) = 1 and
∑

v∈U2
Pr(v) =

1. Note that ΩU−U1−U2
≥λ,v ⊆ ΩU−U1−U2

≥λ−1,v and Pr(U2×ΩU−U1−U2
≥λ−1,v)

= Pr(ΩU−U1−U2
≥λ−1,v) for each v ∈ U2. Thus,

∑
v∈U2

Pr(Ωv) ≤ max
v∈U2

{ΩU−U1−U2
≥λ−1,v)} (16)

= max
v∈U2

{Pr(U2 ×ΩU−U1−U2
≥λ−1,v)}

Let v∗ denote the instance in U2 that makes

Pr(U2 ×ΩU−U1−U2
≥λ−1,v) = max

v∈U2
{Pr(U2 ×ΩU−U1−U2

≥λ−1,v)}.

Clearly, u dominates at least λ instances in any possible world
in U2 ×ΩU−U1−U2

≥λ,v . Therefore, P≥λ(u) ≥ P≥λ(U2). ¤

