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ABSTRACT
Query processing on uncertain data streams has attracted a lot of
attentions lately, due to the imprecise nature in the data generated
from a variety of streaming applications, such as readings from a
sensor network. However, all of the existing works on uncertain
data streams study unbounded streams. This paper takes the first
step towards the important and challenging problem of answer-
ing sliding-window queries on uncertain data streams, witha fo-
cus on arguably one of the most important types of queries—top-k
queries.

The challenge of answering sliding-window top-k queries on un-
certain data streams stems from the strict space and time require-
ments of processing both arriving and expiring tuples in high-speed
streams, combined with the difficulty of coping with the exponen-
tial blowup in the number of possible worlds induced by the uncer-
tain data model. In this paper, we design a unified framework for
processing sliding-window top-k queries on uncertain streams. We
show that all the existing top-k definitions in the literature can be
plugged into our framework, resulting in several succinct synopses
that use space much smaller than the window size, while are also
highly efficient in terms of processing time. In addition to the theo-
retical space and time bounds that we prove for these synopses, we
also present a thorough experimental report to verify theirpractical
efficiency on both synthetic and real data.

1. INTRODUCTION
It has become an important issue to process uncertain (proba-

bilistic) data in many applications, such as sensor networks, data
cleaning, and objects tracking. For a given uncertain dataset, there
are many possible instances called worlds, and thepossible worlds
semantics has been widely used [12, 20, 28, 29, 30, 33].

Consider a radar-controlled traffic monitoring application, where
a radar is used to detect car speeds with possible errors caused by
nearby high voltage lines, close cars’ interference, humanoperators
mistakes, etc. It implies that a speed reading is correct with certain
probability. Table 1 shows a simple uncertain dataset for car speed
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readings. For example, the 4th record indicates that a Benz car (No.
W-541) runs at speed 2 (×10) km per hour through the monitoring
area at AM 10:38 with probability 0.4.

ID Reading Info Speed (×10) prob.
1 AM 10:33, Honda, X-123 5 0.8
2 AM 10:35, Toyota, Y-245 6 0.5
3 AM 10:37, Mazda, Z-341 8 0.4
4 AM 10:38, Benz, W-541 2 0.4

Table 1: 4 Radar reading records
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Figure 1: The possible worlds at time 4

For the 4-tuple uncertain dataset given in Table 1, there arein
total 16 possible worlds for all the 4 speed readings: 8, 6, 5,and
2. Here, a possible world is a set of speed readings associated with
a probability of the set, which is computed based on both the ex-
istence of all the tuples in the possible world and the absence of
all the tuples in the dataset that are not in the possible world, as-
suming mutual independence among the tuples. Figure 1 showsall
the 16 possible worlds. In Figure 1, the top line numbers all the 16
possible worlds; a possible world is of a subset of the 4 speedread-
ings, represented in the middle, and is associated with an occurring
probability of the possible world below. Consider the10th possible
world that contains a set of 2 speed readings:6 and5. The prob-
abilities of the existences of6 and5 are 0.5 and 0.8, respectively,
as given in Table 1. The probabilities of the absence of8 and2 are
both1 − 0.4. Therefore, the probability of the10th possible world
becomes0.144 (= 0.5 × 0.8 × (1 − 0.4) × (1 − 0.4)).

Uncertain data streams. In many real application scenarios, the
collected uncertain data is returned in a streaming fashion, such as
the radar readings example in Table 1 and the collected sensor read-
ings from a real-time monitoring sensor network. These uncertain
data streams have attracted a lot of attention very recently[1, 9, 22,
23, 34]. Since large amounts of such streaming data could arrive
rapidly, the goal here is to design both space- and time-efficient
query processing techniques. On the other hand, streaming data is
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also highly time-sensitive: each item arrives with a timestamp, and
people are generally more interested in the recent tuples than those
in the far past. There are two models for dealing with the timeas-
pect on data streams. One is the so-calledtime-decayingmodel,
which assigns a weight to each tuple that is exponentially decreas-
ing over time. This model usually works together with statistical
aggregates [10, 11], such as averages, histograms, heavy hitters,
etc., but may not be well defined for many other general database
queries such as top-k queries. The other model is the more popular
sliding windowmodel, where we are interested in evaluating the
query on tuples that have arrived in, say, the last 24 hours. This
model is more general, since any query defined on a static dataset
can be also defined with respect to a sliding window. In addition,
sliding-window queries are usually required to becontinuous, i.e.,
the user should be alerted whenever the query result changes, so
that he/she always has the up-to-date query result for the current
sliding window.

Although query processing in sliding windows has been thor-
oughly studied on certain data streams (see [17] and the references
therein), sliding-window queries on uncertain streams arestill an
untapped territory, due to the many challenges brought by the strict
space and time requirements of processing both arriving andexpir-
ing tuples in the high-speed stream, combined with the difficulty
of coping with the exponential blowup in the number of possible
worlds induced by the uncertain nature of the data. Previousworks
on uncertain streams [9, 22, 23, 34] only deal with unbounded
streams but not sliding windows. In this paper, we make a firststep
towards answering sliding-window queries on uncertain streams,
focusing on arguably one of the most important types of queries—
top-k queries.

Top-k queries on uncertain data. Top-k queries have been re-
cently studied in the setting of uncertain data. Given a ranking
function, the goal is to find the top-k ranked tuples in a given uncer-
tain dataset. Soliman et al. [30] defined two types of top-k queries
over a uncertain dataset, called U-Topk and U-kRanks. Hua et al.
[20] defined a probabilistic threshold top-k query, denoted PT-k.
We introduce them in brief below.

The U-Topk query returns the top-k tuples in all possible worlds
with maximum probability. Letk = 2, the query U-Topk upon
the uncertain dataset (Table 1) returns{6, 5}, because this vector
is ranked top in the9th and10th possible worlds, with probability
0.24 (= 0.096 + 0.144). The probability0.24 is higher than that
of any other two speed readings. For example, it is higher than the
probability of having8 and6 as the top-2, whose probability is0.2
(= 0.064 + 0.096 + 0.016 + 0.024), as8 and6 are ranked top-2
in the1th, 2nd,5th, and6th possible worlds.

The U-kRanks query returns the winner for thei-th rank for all
1 ≤ i ≤ k. Consider the same example. Whenk = 2, the U-
kRanks query upon Table 1 returns{8, 5}, because the probability
of having8 as the winner in the first rank is higher than any other
speed readings, and the probability of having5 as the winner of the
second rank is higher than any other speed readings.

The PT-k query returns all the tuples with maximum aggregate
probability greater than a user-given thresholdp, where the aggre-
gate probability represents the sum of probabilities of ranking as
one of the top-k ranked tuples in all possible worlds. Consider Ta-
ble 1, the answer is{5, 6, 8}, with probability 0.64, 0.5, and 0.4,
respectively (assumingp = 0.3). The speed reading 5 is ranked
in top-2 in the3rd, 4th, 9th, 10th, 13th, and14th possible worlds,
with the aggregate probability0.64 (= 0.064 + 0.096 + 0.096 +
0.144 + 0.096 + 0.144).

The three top-k query definitions have different semantics and
may possibly give different results on the same uncertain dataset.

The intention of U-Topk is to find the most likely top-k ranking
list in a random possible world, and to preserve such rankingor-
der. U-kRanks considers the winner in every individual rank, and
PT-k considers the probability of being one of the top-k. It is not
the focus of this paper to argue which definition is better than the
others, or to propose yet another definition. Indeed, the particular
choice should probably be application-dependent. Our goal, on the
other hand, is to design a unified framework for processing sliding-
window top-k queries, which can be coupled with any of the defi-
nitions above.

To make the presentation concise, we use the PT-k query to il-
lustrate our framework; discussions on the other top-k queries are
deferred to Section 5. However, one undesirable problem with the
PT-k query is that the number of tuples returned may differ a lot
over different databases even when using the same thresholdvalue.
The user must set the threshold carefully to make the result set con-
tain k tuples. Therefore, we study a slight variation of it, namely,
theprobabilistick top-k, or simply Pk-topk. In the Pk-topk query,
we do not set a threshold, but returnk tuples with the highest aggre-
gate probabilities being one of the top-k ranked tuples in a random
possible world. Formally, the Pk-topk query is defined as follows:

Definition 1.1. Probabilistick top-k query (Pk-topk): Let D de-
note an uncertain database,PW the possible world space forD.
Let PW (ti) ⊆ PW denote the set of possible worlds containing
ti as one of its top-k ranked tuples. A Pk-topk query returns a set
of k tuplesT = {t1, · · · , tk}, satisfying

P

pw∈PW (ti) Pr[pw] ≥
P

pw∈PW (tj ) Pr[pw], for anyti ∈ T andtj /∈ T .

The Pk-topk query returns thek most probable tuples of being
the top-k among all. For example, in the uncertain dataset of Ta-
ble 1 and withk = 2, the answer is{5, 6}, as they are the two with
the highest probabilities of being among the top-k, with probabili-
ties 0.64 and 0.5, respectively.

All the existing approaches for processing top-k queries [20, 21,
28, 30, 33] are designed for static uncertain datasets, and are inca-
pable of handling streaming data. Directly applying the previous
solutions on sliding windows would require storing all the tuples
within the window, which is quite memory consuming. One major
challenge is that the number of possible worlds that change as the
window slides for one timestamp is huge. Assuming that thereare
W tuples in the window, then the number of possible worlds is2W .
When a new tuple arrives and an old tuple fades out,3/4 of the2W

possible worlds will change.
Consider a continuous Pk-topk query withk = 2 over a slid-

ing window of sizeW = 3, evaluated on the example in Table 1.
Initially the first three tuples arrive (speed readings are5, 6, and
8). The Pk-topk answer is{6, 5}. Then, when the fourth tuple
(speed reading2) arrives, the first speed reading5 expires, and the
possible worlds are built over{6, 8, 2}. Now the top-2 answer be-
comes{6, 8}. It is important to note that the highest speed reading,
8, is not included in the top-k answer in the first sliding window,
but is included in the top-k answer in the second sliding window.
This example shows that in the sliding-window setting, in order to
lower the memory requirement, we need a delicate and efficient
mechanism to decide which tuples shall and shall not be kept for
answering the query as the window advances through time.

Our contributions. In this paper, we design a unified framework
for processing continuous top-k queries in a sliding window over
uncertain data streams. All of the previously proposed top-k defi-
nitions can be plugged into our framework. Our framework is com-
posed of several space- and time-efficient synopses with provable
bounds. As depicted in Section 3, while it is relatively easyto
handle arriving tuples, it is much difficult to cope with tuples expir-
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ing. We need a carefully designed synopsis storing the minimum
amount of information while sufficient for answering the query
continuously at all times, which can also be maintained efficiently.

After formally defining the problem (Section 2), we first show
how the previous techniques can be adapted to be self-maintainable
with respect to insertions (Section 3). This automaticallygives us
a solution if tuples only arrive but never expire, which corresponds
to the case of unbounded streams (or the so-calledlandmark win-
dows). However, handling deletions is inherently much more dif-
ficult than insertions. In fact, if deletions are arbitrary,there is no
better way than keeping everything in the sliding window, since
each tuple would have a chance of being in the query results. Thus,
in order to lower the space complexity, we need to exploit theim-
portant property of a sliding window that tuples arriving first will
also expire first. In Section 4, we propose a series of synopses, each
one building upon the previous one, that progressively improve
the space and time complexities. These synopses are the results
of a novel combination of several techniques including datacom-
pression, buffering, and ideas from exponential histograms [15].
We also analytically prove their space and time bounds, showing
that although our synopses use much less space than the window
size, we can still match the best running time one can hope for,
even if linear space is allowed. Our analytical results are then fur-
ther supported by an experimental report in Section 6, wherewe
observe order-of-magnitude improvements over the previous solu-
tions adapted to the sliding window model. In Section 5, we fur-
ther discuss how the other top-k definitions can be plugged into our
framework. Finally, we review the related work in Section 7 before
concluding the paper.

2. PROBLEM STATEMENT
Let T be an uncertain stream containing a sequence of tuples,

t1, t2, . . . , tN , where the superscripts denote the timestamps of the
tuples. Letf be a ranking function. We useti ≺f tj if f(ti) >
f(tj), and we sayti’s rank is higher thantj ’s. In a similar fash-
ion, ti ≻f tj meansti’s rank is lower thantj ’s. Without loss of
generality, we assume that the ranks of all tuples are unique. The
membership probability of tuplet is denoted asp(t).

A sliding window starting at positioni and ending atj is de-
noted asS[i, j], i.e., S[i, j] = (ti, ti+1, · · · , tj), for i ≤ j. The
size of the sliding window iswsize(S[i, j]) = j − i + 1. For
the sliding windowS[i, j], PW(S[i, j]) denotes its possible world
spacePW(S[i, j]) = {PW1, PW2, · · · }, wherePWj is a pos-
sible world that is a subset of tuples inS[i, j]. The probability of
such a possible worldPW is given asPr(PW ) = Πt∈PW p(t) ×
Πt 6∈PW (1 − p(t)).

Problem statement.Given an uncertain data streamT = (t1, t2,
. . . , tN), and a sliding window sizeW , the goal is to answer the
top-k query for every sliding windowS[i − W + 1, i] as i goes
from W to N . For now we will use tuple-based windows, where
at timei, ti arrives whileti−W expires. But all our algorithms can
be easily extended to time-based windows. We will mostly focus
on the Pk-topk query, but will also discuss extensions to the other
queries in Section 5. As with all streaming algorithms [3], memory
consumption is the most important measure; but at the same time,
we would like the processing time per tuple to be as low as possible.

3. COMPACT SET
This section first defines thecompact set, a basic concept in all

our synopses. It turns out if there are only insertions, one single
compact set is sufficient for maintaining the top-k answers. How-
ever, we need multiple compact sets combined together to cope

with expiring tuples.
Suppose the tuples in an uncertain datasetD aret1 ≺f · · · ≺f

tn. Denote byDi the subset ofD containing the firsti tuples inD,
Di = {t1, · · · , ti}. For0 ≤ j ≤ i ≤ n, let ri,j be the probability
that a randomly generated world fromDi has exactlyj tuples. It
is clear that the probability thatti ranks thej-th in a randomly
generated world fromD is p(ti) · ri−1,j−1.

Definition 3.1. The compact setC(D) for the Pk-topk query on
an uncertain data setD is the smallest subset ofD that satisfies
the following conditions. (1)∀t′ ∈ C(D) andt′′ ∈ D − C(D),
t′ ≺f t′′. (2) Letd = |C(D)|, td the tuple with the lowest rank in
C(D). There arek tuples inC(D), and each such tupletα has

p(tα)
X

1≤l≤k

rα−1,l−1 ≥
X

1≤l≤k

rd,l−1. (1)

Note thatD may not always have a compact set, that is, even
if we put all tuples intoC(D), (1) still cannot be satisfied. When
there exists aC(D) such that (1) holds, we say thatD admitsa
compact set.

It is not difficult to obtain the following recursion [20, 33]:

ri,j =

8

<

:

p(ti)ri−1,j−1 + (1 − p(ti))ri−1,j , i ≥ j ≥ 0;
1, i = j = 0;
0, else.

(2)

Thus we can use dynamic programming to compute all the entries
in the arrayr, as well asC(D), in timeO(kd). We first show that
if D has a compact setC(D), then we do not need to look at tuples
not inC(D) in order to answer a Pk-topk query.

Theorem 3.1.The compact setC(D) is sufficient for answering a
Pk-topk query onD.

PROOF. Consider any tupleti, i > d. Let ξs be the probability
that exactlys tuples from{td+1, · · · , ti−1} appear. The probabil-
ity that ti’s rank isj is p(ti)(

Pj
l=1 rd,l−1ξj−l). Then, the proba-

bility of ti being ranked at any position between 1 andk is

p(ti)

k
X

j=1

 

j
X

l=1

rd,l−1ξj−l

!

= p(ti)

k
X

l=1

 

rd,l−1

k−l
X

j=0

ξj

!

≤ p(ti)

k
X

j=1

rd,j−1 ≤
k
X

j=1

rd,j−1,

where the first “≤” is because
Pk−1

j=0 ξj ≤ 1.

Thus if D has a compact setC(D), then we only need to run
the dynamic program onC(D) to compute the Pk-topk results in
time O(kd). This algorithm is actually similar to that in [20, 21,
33], which also show that except for some pathological cases, the
compact set almost always exists and much smaller than the whole
data set. So answering a top-k query is usually quite efficient, and
we do not need to look at the entire dataset at all, assuming of
course the tuples are already sorted in rank order.

Example 3.1. Consider a Pk-topk query over the dataset in Table
1, k = 2. After sorting,t1 = 8, t2 = 6, t3 = 5, andt4 = 2. Ap-
plying (2), we calculate the arrayr using dynamic programming:
r0,0 = 1, r0,1 = 0, r1,0 = 0.6, r1,1 = 0.4, r2,0 = 0.3, r2,1 = 0.5,
r3,0 = 0.06, r3,1 = 0.34. Now, we find that whend < 3, there
does not exist any tupletα (α ≤ d) satisfying (1). Whend = 3, all
of three tuples (t1, t2, andt3) are validtα. So, the compact set for
that dataset is{t1, t2, t3}. 2
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However, [20, 21, 33] only considered the static case. It is not
clear at all whether this compact set can be self-maintainedas tu-
ples are inserted intoD. It turns out that to answer this question, a
much more careful analysis is required.

Self-maintenance of the compact set.We first need to study some
important characteristics of the arrayr. We also study the change
ratioqi,j of adjacent entries for any tupleti, namelyqi,j =

ri,j+1

ri,j
.

Specifically, we can prove the following properties.

Lemma 3.1.The value ofqi,j is monotonically decreasing for any
tupleti, i.e.,r2

i,j ≥ ri,j−1 · ri,j+1, for j ≥ 1.

PROOF. Wheni = 1, ri,0 = 1 − p(t1), ri,1 = p(t1), and for
anyj > 1, ri,j = 0. So, wheni = 1, the lemma holds.

Assuming the lemma is true fori, we consider the case ofi + 1.
If j + 1 > i, it is trivial becauseri,j+1 = 0. So, we only need to
analyze the situation where1 ≤ j < i. By (2),

∆ = r2
i+1,j − ri+1,j−1ri+1,j+1

= (p(ti+1)ri,j−1 + (1 − p(ti+1))ri,j)
2

−(p(ti+1)ri,j−2 + (1 − p(ti+1))ri,j−1) ·

(p(ti+1)ri,j + (1 − p(ti+1))ri,j+1)

= (p(ti+1))
2(r2

i,j−1 − ri,j−2ri,j)

+(1 − p(ti+1))
2(r2

i,j − ri,j−1ri,j+1)

+p(ti+1)(1 − p(ti+1))(ri,j−1ri,j − ri,j−2ri,j+1)

≥ p(ti+1)(1 − p(ti+1))(ri,j−1ri,j −
r2

i,j−1

ri,j

r2
i,j

ri,j−1
) (3)

= 0.

Note that we assumedri,j−1 > 0 andri,j > 0 in (3). Otherwise,
ri,j−2 = 0, we still have∆ ≥ 0.

Lemma 3.2.For any two tuplesti, tj satisfyingti ≺f tj , we have
qi,l ≤ qj,l, wherel ≥ 0, i.e.,ri,l+1rj,l ≤ ri,lrj,l+1.

PROOF. First, consider the casej = i + 1. We have

qi,l − qi+1,l =
ri,l+1

ri,l
−

ri+1,l+1

ri+1,l

=
1

ri,lri+1,l
(ri,l+1ri+1,l − ri,lri+1,l+1)

=
p(ti+1)

ri,lri+1,l+1
(ri,l+1ri,l−1 − r2

i,l) ≤ 0 (Lemma 3.1)

Repeating the same step iteratively proves the lemma for any
j > i.

Lemma 3.3.For any tupleti, the seriesri,j is unimodal, i.e., there
exists somem such thatri,j is monotonically increasing whenj <
m while monotonically decreasing whenj > m.

PROOF. According to Lemma 3.1, the value ofqi,j decreases
monotonically. Letm be the maximum such thatqi,m ≤ 1, then
it is not difficult to verify that m meets the requirement in the
lemma.

Lemma 3.4. For any tuplesti, tj , ti ≺f tj . The peak point of the
corresponding series (in Lemma 3.3) forti is no later thantj .

PROOF. Follows from Lemma 3.2.

Theorem 3.2. Let C(D) be the compact set ofD, let td be the
lowest-rank tuple inC(D), and lettnew be a new tuple to be in-
serted intoD. ThenC(D ∪ {tnew}) = C(D) if td ≺f tnew, and
C(D ∪ {tnew}) ⊆ C(D) ∪ {tnew} if tnew ≺f td.

PROOF. Letr′ be the array forC(D)∪{tnew}. Let us consider
the following cases in turn.

Case 1: tnew ≻f td. Thenri,j = r′i,j for all 1 ≤ i ≤ d,
so rα−1,l−1 andrd,l−1 remain unchanged for1 ≤ l ≤ k. Thus,
C(D ∪ {tnew}) = C(D).

Case 2: For all thetα that meets (1),td ≻f tnew ≻f tα. We
will show that (1) still holds onr′. For1 ≤ l ≤ k, we have

r′d,l−1 = p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1.

Summing over alll,

k
X

l=1

r′d,l−1 =
k
X

l=1

rd,l−1 − p(tnew)rd,k−1, (4)

namely, the RHS of (1) is reduced while its LHS stays the same.
So (1) still holds onr′, henceC(D ∪ {tnew}) ⊆ C(D) ∪ {tnew}.

Case 3: There exists one or moretα that meet (1) such that
tα ≻f tnew. Now both the LHS and RHS of (1) change, so we
need to be more careful.

First, for any suchtα, we have

r′α−1,l−1 = p(tnew)rα−1,l−2 + (1 − p(tnew))rα−1,l−1.

Summing over alll,

k
X

l=1

r′α−1,l−1 =

k
X

l=1

rα−1,l−1 − p(tnew)rα−1,k−1.

So the LHS of (1) decreases by a fraction of

1 −
p(tα)

Pk
l=1 r′α−1,l−1

p(tα)
Pk

l=1 rα−1,l−1

= p(tnew)
rα−1,k−1

Pk
l=1 rα−1,l−1

.

Similarly, by (4), the RHS of (1) decreases by a fraction of

p(tnew)
rd,k−1

Pk
l=1 rd,l−1

.

Next we show that
rd,k−1

Pk
l=1 rd,l−1

≥
rα−1,k−1

Pk
l=1 rα−1,l−1

, (5)

thus establishing the fact that (1) still holds onr′.
We prove (5) by induction. For the base casek = 2, by Lemma

3.2, we have
rd,1

rd,0 + rd,1
= 1 −

rd,0

rd,0 + rd,1
≥ 1 −

rd,0

rd,0 +
rα−1,1rd,0

rα−1,0

=
rα−1,1

rα−1,0 + rα−1,1
.

Next we considerk + 1 assuming (5) is true fork. Again by
Lemma 3.2, we have

rd,k
Pk+1

l=1 rd,l−1

≥

rα−1,krd,k−1

rα−1,k−1

Pk
l=1 rα−1,l−1

rd,k−1

rα−1,k−1
+

rα−1,krd,k−1

rα−1,k−1

=
rα−1,k

Pk+1
l=1 rα−1,l−1

.

So (5) holds for allk, and the theorem is proved.

Theorem 3.2 gives us a very simple algorithm for maintaining
the compact set if tuples are only inserted intoD but never deleted.
For an incoming tupletnew , we first check iftnew ≺f td. If so
then we recompute the arrayr onC(D) ∪ {tnew}, which gives us
the updated compact setC(D∪{tnew}) and also the updated top-k
results. Otherwise we simply discardtnew knowing that it will not
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affect the query results. However, the presence of expiringtuples
make the problem much more difficult, since if a tuple inC(D)
expires, this whole compact set is useless and we need to compute
a new compact set fromD. Thus simply using one compact set for
a sliding window implies that we cannot discard any tuple in the
window until it expires, using memoryΩ(W ). In the next section,
we present our sliding-window synopses, which combines multiple
compacts sets together, so that we can safely discard most tuples in
the window while still being able to maintain the up-to-datequery
results at any time as the window slides through time.

4. SYNOPSES FOR SLIDING WINDOWS
The previous section shows that the compact set is self-maintain-

able under insertions. However, if a tuple in the compact setex-
pires, then there is no way to reconstruct it without maintaining tu-
ples outside the compact set. Then the question is, how many other
tuples do we need to keep? This section will focus on answering
this question.

First of all, notice that in the worst-case scenario, for example
when the tuples always arrive with decreasing ranks and decreasing
probabilities, any tuple will be in the top-k result at some point in
time as the window slides. In this case, any synopsis has to remem-
ber everything in the window in order to avoid incorrect query re-
sults. So it is hopeless to design a synopsis with a sublinearworst-
case space bound. Therefore, we will assume that the tuples arrive
in a random order. Thisrandom-order streammodel has received
much attention lately from the stream algorithms community[18,
6, 5], mainly because the worst-case bounds for many streaming
problems are simply too pessimistic and thus meaningless. The
random-order stream model has been argued to be a reasonableap-
proximation of real-world data streams while often allowing for
much better expected bounds. This model is an ideal choice for the
study of our problem since as shown above, in the worst case, there
is really nothing better one can do than the naive approach, which
simply keeps all tuples in the sliding window.

Before presenting our solutions, we first analyze the directadap-
tation of the existing technique to the sliding window setting, which
we refer to as theBase Synopsis, or theBS. To make the analytical
comparison with our synopses easier, we useH to denote the max-
imum size of the compact sets that are maintained in the synopsis.
As argued in [33, 20], although in the worst case,H = W , but on
most datasets,H ≪ W . As discussed in the previous section, BS
needs to keep all theW tuples in the window (in the rank order)
and its compact setC. The arrayr takesO(kH) space, thus the
total space of BS isO(W +kH), which is effectivelyO(W ) since
H ≪ W . When the window slides, if either the expiring tuple is
in C, or the incoming tuple’s rank is higher than the lowest ranked
tuple in C, then we recomputeC from all the tuples in the win-
dow. SinceC keeps the highest-ranked tuples in the window, either
event happens with probabilityO(H/W ), so the expected cost of
maintainingC is O(kH2/W ). Maintaining the tuples in the rank
order takesO(log W ) time per tuple. Thus we have the following.

Lemma 4.1.BS requiresO(W + kH) space and spends expected
O(kH2/W + log W ) time to process each tuple.

In the following subsections we present our sliding-windowsyn-
opses. Each of them builds upon the previous one with new ideas,
progressively improving either the space complexity or theprocess-
ing time. Our final synopsis requiresO(H(k + log W )) space
and has a processing time ofO(kH2/W + log W ). So it matches
the processing time of BS while having a much lower space com-
plexity. To appreciate this result, the reader is reminded that most
streaming algorithms, e.g., most sketches [3, 25], requirehigher

Algorithm 1 MaintainCSQ

1: Tuple setD = ∅; compact set queueΨ = ∅;
2: for each arriving tuplet
3: insertt into D;
4: if (successfully create a compact setC(D) for D)
5: appendC(D) to Ψ;
6: remove tuples inD older thant′′ (includingt′′), where

t′′ is the oldest tuple inC(D);
7: for (each compact setC(Si) ∈ Ψ from new to old)
8: if (t ≺f lowest ranked tuple inC(Si))
9: updateC(Si) := C(C(Si) ∪ {t});

10: if (C(Si) = the previous compact set inΨ)
11: removeC(Si) from Ψ;
12: else
13: break;
14: if (the expiring tuple∈ C(SW ))
15: removeC(SW ) from Ψ;
16: C(SW ) := first compact set inΨ;
17: compute the arrayr on the newC(SW );

running times than the naive approach in order to achieve lowspace
complexity.

4.1 Compact Set Queue
Our first synopsis, called theCompact Set Queue(CSQ) is the

simplest of all but forms the basis of the more advanced synopses.
Let Si denote the set of the lasti tuples in the sliding window. In
the CSQ, we simply keep all the distinct compact setsC(Si) for all
i = 1, . . . , W . We only keep the arrayr for C(SW ) from which
we can extract the top-k results. Since we have the compact set for
eachSi, when a tuple inC(SW ) expires, we can moveC(SW−1)
forward to become the newC(SW ).

Algorithm 1 describes the detailed algorithm to maintain the
CSQ. We maintain a queueΨ of all the distinct compact sets. The
tuple setD temporarily keeps the newest tuples. InitiallyD does
not admit a compact set. As tuples arrive atD, D will have a valid
compact set at some point. When this happens, we createC(D),
and append it toΨ. Tuples inD but older than the oldest tuple in
C(D) (including the oldest tuple inC(D)) are removed fromD
(lines 1–6). Note that after the removal,D does not admit a com-
pact set anymore. Therefore, whenD has collected enough new
tuples, the new compact set it generates must be different from the
existing ones inΨ. Next we update all the compact sets inΨ in turn
according to Theorem 3.2, while removing duplicates (lines7–13).
Finally, we check if the expiring tuple exists inC(SW ), if so we
removeC(SW ) from Ψ, and the next compact set inΨ becomes
the newC(SW ) (lines 14–17).

Lemma 4.2.The expected number of distinct compact sets in CSQ
is O(H log W ); the expected number of compact sets that need to
be updated per tuple isO(H).

PROOF. Let Xi be the indicator variable such thatXi = 1 if
C(Si) is different fromC(Si+1), andXi = 0 otherwise. It is
obvious that the expected number of distinct compact sets inΨ is
E[
PW

i=1 Xi]. The eventC(Si+1) 6= C(Si) happens only when
the rank of the oldest tuple inSi+1 is higher than the lowest ranked
tuple inC(Si). BecauseC(Si) contains the≤ H highest ranked
tuples inSi, the occurring probability of this event is at mostH/i.
Hence,

E[Xi] = Pr[Xi = 1] ≤ max{1, H/i},
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and

E

"

W
X

i=1

Xi

#

≤ H + H

„

1

H
+ · · · +

1

W

«

= O(H log W ).

Now consider the arrival of a new tuplet. LetYi be the indicator
variable such thatYi = 1 iff Xi = 1 andt affectsC(Si+1). For the
latter to happen,t must rank higher than the lowest ranked tuple in
C(Si+1), soPr[Yi = 1|Xi = 1] ≤ max{1, H/(i + 1)}. Hence,
the expected number of compact sets affected byt is

E

"

W
X

i=1

Yi

#

=
W
X

i=1

Pr[Xi = 1] Pr[Yi = 1|Xi = 1]

≤ H + H2

„

1

H(H + 1)
+ · · · +

1

W (W + 1)

«

≤ H + H2 ·
1

H
= O(H).

Theorem 4.1.CSQ requiresO(H2 log W ) space and can be main-
tained in timeO(kH2) per tuple.

PROOF. Since each compact set has sizeO(H), and the arrayr
has sizeO(kH), the space bound follows from Lemma 4.2. Each
compact set can be updated in timeO(kH) and there areO(H)
of them that need to be updated, so the total time for the update is
O(kH2).

4.2 Compressed Compact Set Queue
Although CSQ only contains distinct compact sets, there is still

a lot of redundancy as one tuple may appear in multiple compact
sets. In theCompressed Compact Set Queue (CCSQ), we try to
eliminate this redundancy by storing only the difference between
two adjacent compact setsC(Si) andC(Si−1). More precisely, if
C(Si) 6= C(Si−1), we keep both∆+

i = C(Si) − C(Si−1) and
∆−

i = C(Si−1) − C(Si). Now we can discard all theC(Si) in
the queueΨ except the newest one.

We need to bound the total size of these differences. First, since
Si has only one more tuple thanSi−1, by Theorem 3.2, it is clear
that |∆+

i | ≤ 1. By Lemma 4.2, the total number of nonempty
∆+

i is O(H log W ), so we have
PW

i=1 |∆
+
i | = O(H log W ). To

bound the total size of all the∆−
i , we need the following property.

Lemma 4.3. If tuple t appears both inC(Si) andC(Sj), i < j,
then it appears in all compact sets betweenC(Si) andC(Sj), i.e.,
t ∈ C(Sl) for all i ≤ l ≤ j.

PROOF. BecauseSj ⊃ Sl, by repeatedly applying Theorem 3.2,
we haveC(Sj) ⊆ C(Sl) ∪ (Sj − Sl), i.e., any tuple inC(Sj) is
either fromC(Sl) or from Sj − Sl. For anyt ∈ C(Si) ∩ C(Sj),
sincet ∈ Si andSi∩(Sj −Sl) = ∅, we must havet ∈ C(Sl).

Thus, as we go fromC(S1) to C(SW ), once a tuple disappears,
it will never appear again. So we have

W
X

i=1

|∆−
i | ≤ H +

W
X

i=1

|∆+
i | = O(H log W ).

By this compression technique, we have reduced the space com-
plexity of CSQ by roughly anO(H) factor.

Theorem 4.2. CCSQ requiresO(H(k + log W )) space and can
be maintained in timeO(kH2) per tuple.

PROOF. As argued above, storing all the compact sets with com-
pression requiresO(H log W ) space. We also need the arrayr,
which takesO(kH) space.

To see that the processing time remains unchanged, just notethat
Lemma 4.2 still holds, and we can restore eachC(Si) in Ψ by
making a pass over∆+

i and∆−
i , update it, and compute the new

∆+
i and∆−

i , all in timeO(kH2).

4.3 Segmental Compact Set Queue
With CCSQ, we have lowered the space complexity of the synop-

sis to almost minimal: we only need one arrayr and keepO(H log W )
tuples, as opposed to BS which stores all theW tuples. However,
the maintenance cost of CCSQ is still very high. In the next two
advanced synopses, we try to improve the processing time while
maintaining the low space complexity.

We notice that the high computation complexity is due to the
fact thatO(H) compact sets need to be updated per incoming tu-
ple. However, only the oldest compact setC(SW ) is needed to
extract the top-k query results; all the other compact sets simply
act as a continuous “supply” forC(SW ) when it expires. For these
compact sets, we actually do not need to maintain them exactly. As
long as we have a super set for each of them, which can be main-
tained much more efficiently, then we can still reconstruct it exactly
when it becomes the oldest compact set in the queue. But on the
other hand, we do not want these super sets to be too large to violate
the space constraint, so we need a carefully designed mechanism to
balance space and time. With this intuition, we introduce our next
synopsis, theSegmental Compact Set Queue (SCSQ).

In SCSQ, we only maintain a small number of distinct compact
setsC(Sℓ1), · · · , C(Sℓn), for 1 ≤ ℓ1 < · · · < ℓn ≤ W . For
eachi, we also maintainΛℓi

, a set of tuples inSℓi+1
− Sℓi

(define
ℓn+1 = W ) such thatC(Sj) ⊆ Sℓi

∪ Λℓi
for all ℓi ≤ j < ℓi+1.

Note that any tuple inΛℓi
must rank higher than the lowest ranked

tuple inC(Sℓi
). Finally, we always keepC(SW ) and its associated

arrayr, from which we extract the top-k results.
We maintain the following invariants in SCSQ throughout time1:

|Λℓi
| ≤ H, for i = 1, . . . , n; (6)

|Λℓi
| + |Λℓi+1

| ≥ H, for i = 1, . . . , n − 1. (7)

The correctness of SCSQ follows from its definition and The-
orem 3.2: WheneverC(SW ) expires, since the newC(SW ) is a
subset ofC(Sℓn) ∪ Λℓn , we can rebuild it in timeO(kH).

Whenever invariant (7) is violated, we do a merge by setting
Λℓi

:= Λℓi
∪Λℓi+1∪{t

′}, wheret′ is the oldest tuple inC(Sℓi+1),
and then removingC(Sℓi+1

), Λℓi+1
. It is not difficult to verify that

Λℓi
∪C(Sℓi

) now contains all the tuples needed to cover anyC(Sj)
for ℓi ≤ j < ℓi+2, and both invariants (6) and (7) are restored.

The procedure to maintain the SCSQ is actually very similar to
that of CSQ, the only difference is now we only updateC(SW ) and
C(Sℓi

) for eachi = 1, . . . , n. Next, if C(Sℓi
) has changed, tuples

in Λℓi
are simply removed if their ranks are lower than the lowest

ranked tuple inC(Sℓi
). Whenever invariant (7) is violated, we do a

merge as described above. Finally, ifC(SW ) expires, we compute
a newC(SW ) from C(Sℓn) ∪ Λℓn .

Example 4.1. Figure 2 shows how the SCSQ evolves over time.
For illustration purposes we assumeH = 3 and all compact sets
have exactly the 3 highest ranked tuples. The queue containstwo

1Note thatH is not fixed in advance and may change over time.
So we update and use a newH whenever the maximum size of
the compact sets currently maintained in the synopsis changes by
a factor of 2. This does not affect the asymptotic bounds of our
algorithms.
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compact sets at time 8:C(S3) = {5, 6, 1}, Λ3 = ∅; C(S4) =
{3, 5, 6}, Λ4 = {8, 7, 9}. When tuplet9 arrives, the existing
two compact sets are shifted and updated asC(S4) = {5, 6, 4},
C(S5) = {5, 6, 4}. At the same time,Λ3 andΛ4 are also shifted
(but unchanged) to beΛ4 andΛ5. SinceC(S4) andC(S5) are now
the same, we deleteC(S5), and setΛ4 = Λ5. A new compact set
is createdC(S3) = {5, 6, 1} andΛ3 = ∅. Next, we remove the ex-
piring tuple 8 fromΛ4. Since|Λ3|+|Λ4| = 2 < H , we do a merge,
removingC(S4) while updatingΛ3 := Λ3∪Λ4∪{5} = {7, 9, 5}.
The final status is shown in Figure 2(b). 2

The following result is crucial in bounding the size and process-
ing time of SCSQ.

Lemma 4.4.SCSQ maintains expectedO(log W ) compact sets.

PROOF. Under the random-order stream model, all ofℓ1, . . . , ℓn,
as well asn, are random variables. Below we show thatE[n] =
O(log W ).

Consider the stochastic process consisting of the sequenceof
random variablesℓ1, ℓ3, ℓ5, . . . . We say that it is a good event if
ℓ2i+1 ≥ 2ℓ2i−1, and a bad event otherwise. It is clear that the se-
quence will terminate before we havelog W good events. We con-
struct a sequence of indicator variablesX1, X2, . . . , whereXi = 1
iff the i-th event is good, and letYm = X1 + · · · + Xm. Then
E[n] ≤ 2 · E[arg minm{Ym = log W}].

Now we focus on boundingE[Y ]. Consider the bad eventℓ2i+1 <
2ℓ2i−1. If this happens, due to invariant (7), there must be more
thanH tuples inS2ℓ2i−1

− Sℓ2i−1
that rank higher than theH-

th ranked tuple inSℓ2i−1
. If so, among the top-(2H) ranked tu-

ples inS2ℓ2i−1
, more than half of them must be in the older half

S2ℓ2i−1
−Sℓ2i−1

. This occurs with probability less than 1/2. There-
fore, for anyi, the probability that thei-th event is bad is less than
1/2, or equivalentlyPr[Xi = 1] > 1/2.

AlthoughX1, X2, . . . are not necessarily independent, the argu-
ment above holds for eachXi regardless of the values ofXj , j 6= i.
ThereforeYm is stochastically greaterthan a binomial random
variableZm ∼ binomial(m, 1/2): Ym ≥st Zm. The expectation
E[arg minm{Ym = log W}] can be written as

X

i≥1

Pr[arg min
m

{Ym = log W} ≥ i]

=
X

i≥1

Pr[Yi−1 < log W ]

≤ 4 log W + 1 +
X

i≥4 log W

Pr[Yi < log W ]

≤ O(log W ) +
X

i≥4 log W

Pr[Zi < log W ] (Ym ≥st Zm)

≤ O(log W ) +
X

i≥4 log W

e−(i/2−log W )2/i (Chernoff bound)

≤ O(log W ) +
X

i≥4 log W

e−i/16 = O(log W ),

hence the proof.

Theorem 4.3. SCSQ requiresO(H(k + log W )) space and pro-
cesses each tuple in timeO(kH log W ).

PROOF. Since the arrayr has sizeO(kH) and each compact
set has sizeO(H), the space bound then follows from Lemma 4.4.
Updating all the compact sets takesO(kH log W ) time. Updating
all theΛℓi

and doing the necessary merges take timeO(H log W ),
hence the time is bounded.
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(b) At time 9
Figure 2: Maintaining the SCSQ.

4.4 SCSQ with Buffering
SCSQ makes anO(H)-factor improvement over the previous

synopses in terms of processing time, but there is still roomfor
improvement. With our final synopsis,SCSQ-Buffer, we make an-
other significant improvement by augmenting SCSQ with a buffer-
ing technique, reducing the processing time to minimum.

The basic intuition here is that since onlyC(SW ) is useful for
the query, we update only this compact set every time the window
slides. For the rest of the compact sets, we update them in batches.
More precisely, we keep a bufferB of sizekH for the latest tuples2.
(We assumeW > kH ; otherwise we just switch to BS.) When
the buffer is full, we empty it and make necessary changes to the
synopsis. The detailed algorithm is shown in Algorithm 2.

Algorithm 2 BatchUpdate

1: letB be a buffer with sizekH ;
2: for (each arriving tuplet)
3: insertt into B;
4: if (B is full)
5: find the smallesti such thatBi admits a compact set;
6: starting fromi, build SCSQ onB;
7: update the existing SCSQ;
8: B = ∅;
9: if (C(SW ) is affected)

10: updateC(SW );
11: remove expired compact sets in SCSQ;

First, we need to build new compacts sets and the relevantΛℓ ’s
for the tuples inB. Let Bi be the set ofi latest tuples inB. To
do so, we first do a binary search to find the smallesti such that
Bi admits a compact set (line 5). Since checking eachBi takes
O(kH) time, the binary search takesO(kH log(kH)) time. Then
we build the first compact set. Next we scan the remaining tu-
ples from new to old, putting intoΛi those tuples ranking higher
than the lowest ranked one inC(Bi). When|Λi| = H we stop,
and restart the same process by building another compact set. By
Lemma 4.4 we will buildO(log(kH)) new compact sets forB,
spendingO(kH log(kH)) time in total (line 6).

Secondly, we update all the existing compact setsC(Sℓi
) and

theΛℓi
with all the tuples inB (line 7). Since there areO(log W )

compact sets and updating each one takesO(kH) time, the total
cost isO(kH log W ). Updating all theΛℓi

and making all the nec-
essary merges takeO(H log W ) time. Therefore, the total cost for
emptying a buffer of sizekH is O(kH log(kH) + kH log W ) =
O(kH log W ). So the amortized cost per tuple is onlyO(log W ).

Finally, for each incoming tuple, we always updateC(SW ) if
necessary (line 9–10). Similar to the case with BS,C(SW ) is af-
fected with probabilityO(H/W ), so the cost of maintainingC(SW )

2We change the size of the buffer wheneverH changes by a factor
of 2. See also footnote 1.
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Space Processing time
BS O(W + kH) O(kH2/W + log W )

CSQ O(H2 log W ) O(kH2)
CCSQ O(H(k + log W )) O(kH2)
SCSQ O(H(k + log W )) O(kH log W )

SCSQ-Buffer O(H(k + log W )) O(kH2/W + log W )

Table 2: Asymptotic space and processing time bounds analysis

is O(kH2/W ).

Theorem 4.4.SCSQ-Buffer requiresO(H(k +log W )) space and
has an amortized processing time ofO(kH2/W + log W ).

We summarize the space and time complexities of all five syn-
opses we have presented so far in Table 2. Bearing in mind that
k < H ≪ W , we can see that SCSQ-Buffer has both the best
space bound and the best processing time.

5. SUPPORTING OTHER TOP-K DEFINI-
TIONS

As we have seen, our synopses are quite general in the sense that
any other top-k query definition can be plugged into the framework
if a compact set can be defined such that Theorem 3.1 (sufficiency)
and Theorem 3.2 (self-maintenance with respect to insertions) both
hold. This section briefly shows how to support the other three
top-k definitions on uncertain data proposed in the literature in our
framework. In fact, all the existing solutions read the tuples in the
rank order, and stop as soon as the correctness of the resultsare
guaranteed. Such an approach naturally yields a compact setwhich
is also sufficient. So we only need to prove self-maintainability.

PT-k queries.Let the arrayr be defined as before.

Definition 5.1.([20]) The compact setC(D) for the PT-k query
with a thresholdτ on an uncertain data setD is the smallest subset
of D that satisfies the following conditions. (1)∀t′ ∈ C(D) and
t′′ ∈ D − C(D), t′ ≺f t′′. (2) τ ≥

P

1≤l≤k rd,l−1, wheretd is
the lowest ranked tuple inC(D).

Theorem 5.1. The compact set defined for PT-k queries is self-
maintainable with respect to insertions.

PROOF. Lettnew be the new tuple to be inserted toD. If tnew ≻f

td, rd,l−1 remains unchanged for1 ≤ l ≤ k, soC(D) stays un-
changed. Otherwise iftnew ≺f td, then

k
X

l=1

r′d,l−1 =

k
X

l=1

(p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1)

=

k−1
X

l=0

p(tnew)rd,l−1 +

k
X

l=1

(1 − p(tnew))rd,l−1

=

k
X

l=1

rd,l−1 − p(tnew)rd,k−1 ≤
k
X

l=1

rd,l−1 < τ.

So, any tuple not inC(D) ∪ {tnew} cannot be an answer.

U-kRanks Queries.Let the arrayr be defined as before.

Definition 5.2.([33]) Thecompact setC(D) for the U-kRanks query
on an uncertain data setD is the smallest subset ofD that satisfies
the following conditions. (1)∀t′ ∈ C(D) andt′′ ∈ D − C(D),
t′ ≺f t′′. (2) Lettd be the lowest ranked tuple inC(D), then

max
1≤i≤d

p(ti)ri−1,j−1 ≥ max
1≤l≤k

rd,l−1, for j = 1, . . . , k. (8)

As defined, condition (8) is unwieldy to prove self-maintainability.
So we first convert it to an equivalent, but much simpler condition.
Specifically, we replace (8) with the following:

p(tα)rα−1,k−1 ≥ max
1≤l≤k

rd,l−1, for someα ≤ d. (9)

Compared with (8), (9) is much easier to check because it only
requires finding one tupletα for rankk, not for all the ranks. But
as we show below, (9) also implies (8), hence equivalent with(8).

Lemma 5.1. For any i, if p(ti)ri−1,k−1 ≥ max1≤l≤k rd−1,l−1,
then for anyj, 1 ≤ j ≤ k, we have

p(ti)ri−1,j−1 ≥ max
1≤l≤j

rd−1,l−1. (10)

PROOF. Letarg max1≤l≤k rd−1,l−1 = m. According to Lemma
3.3,rd−1,l−1 monotonically increases whenl ≤ m and monoton-
ically decreases whenl ≥ m. By Lemma 3.2, whenl ≥ m, we
have

ri−1,l−1 ≥
rd−1,l−1

rd−1,l
· ri−1,l ≥ ri−1,l.

So for allm ≤ j ≤ k,

p(ti)ri−1,j−1 ≥ p(ti)ri−1,k−1 ≥ max
1≤l≤k

rd−1,l−1 = max
1≤l≤j

rd−1,l−1.

Next consider the case1 ≤ j ≤ m. Note that in this case the
RHS of (10) isrd−1,j−1. We will prove (10) by induction forj =
m, . . . , 1. The base casej = m has already been proved above.
Now suppose (10) holds forj, i.e.,p(ti)ri−1,j−1 ≥ rd−1,j−1, and
we considerj − 1. By Lemma 3.2,

p(ti)ri−1,j−2 ≥ p(ti)
ri−1,j−1

rd−1,j−1
rd−1,j−2 ≥ rd−1,j−2.

So, (10) holds for allj, 1 ≤ j ≤ k.

Theorem 5.2.The compact set defined for U-kRanks query is self-
maintainable with respect to insertions.

PROOF. We consider the following three cases.
Case 1: tnew ≻f td. In this case,rα−1,k−1 andrd,l−1 remain

unchanged, soC(D) stays unchanged.
Case 2: td ≻f tnew ≻f tα. In this case,rd,l−1 changes to

r′d,l−1 = p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1

≤ max{rd,l−2, rd,l−1} ≤ max
1≤l≤k

rd,l−1,

while rα−1,l−1 is unchanged. So (9) still holds onC(D)∪{tnew}.
Case 3: tα ≻f tnew. Both rα−1,l−1 andrd−1,l−1 change to

r′α−1,l−1 andr′d−1,l−1. We compute

∆ = p(tα)r′α−1,k−1 − max
1≤l≤k

r′d,l−1

= p(tα)(p(tnew)rα−1,k−2 + (1 − p(tnew))rα−1,k−1)

− max
1≤l≤k

{p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1}

≥ p(tα)(p(tnew)rα−1,k−2 + (1 − p(tnew))rα−1,−1)

−(p(tnew) max
1≤l≤k−1

rd,l−1 + (1 − p(tnew)) max
1≤l≤k

rd,l−1)

= p(tnew)(p(tα)rα−1,k−2 − max
1≤l≤k−1

rd,l−1)

+(1 − p(tnew))(p(tα)rα−1,k−1 − max
1≤l≤k

rd,l−1))

≥ 0. (by Lemma 5.1)

So (9) still holds onC(D) ∪ {tnew}.
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U-Topk queries.Suppose the tuples inD aret1, t2, . . . in the de-
creasing rank order. Consider ak-vectorT = (tm1

, . . . , tmk
). Let

Pr(T ) be the probability ofT being the top-k tuples in a random
possible world. We have

Pr(T ) =
k
Y

i=1

p(tmi
)

Y

i<mk,ti /∈T

(1 − p(ti)).

Recall that a U-Topk query returns the vectorT with maximum
Pr(T ). Let Di = {t1, . . . , ti}, and letDp

i be the subset ofDi

containing thek tuples with maximum probabilities inDi. Define
ρi as

ρi =
Y

tj∈D
p
i

p(tj)
Y

j≤d,tj /∈D
p
i

(1 − p(tj)). (11)

Definition 5.3.([33]) Thecompact setC(D) for the U-Topk query
on an uncertain data setD is C(D) = Dd whered is the smallest
such that

max
k≤i≤d

ρi ≥
Y

1≤i≤d

max{p(ti), 1 − p(ti)}. (12)

Lemma 5.2. C(D) contains at mostk tuples with probability
greater than1

2
.

PROOF. If C(D) contains more thank tuples with probability
greater than1

2
, there existsd′ < d, and exactlyk tuples fromDd′

have probabilities are greater than1
2
. We havemaxk≤i≤d′ ρi ≥

ρd′ =
Q

1≤i≤d′ max{p(ti), 1 − p(ti)}. This contradicts the fact
thatd is the smallest such that (12) holds.

Theorem 5.3. The compact set defined for U-kRanks queries is
self-maintainable with respect to insertions.

PROOF. We consider the following two cases.
Case 1: tnew ≻f td. In this case, it is easy to see thatC(D)

stays unchanged.
Case 2: td ≻f tnew. LetD′ = C(D)∪{tnew}, also represented

asD′ = {t′1, · · · , t′d+1}, ordered by rank. Supposet′m = tnew,
then for1 ≤ i < m, t′i = ti; for m < i ≤ d, t′i+1 = ti. Let p̂i

denote thekth largest probability in{t1, · · · , ti}, p̌ the probability
of tupletnew, ρ′

i andρi the value of (11) for the setD′ andC(D)
respectively. We have

ρ′
i =

8

>

>

>

>

>

<

>

>

>

>

>

:

ρi, i < m
ρi−1(1 − p̌), i ≥ m, p̌ < p̂i−1;
ρi−1(1 − p̂i−1)

p̌
p̂i−1

≥ ρi−1(1 − p̌), i ≥ m, 1
2

> p̌ ≥ p̂i−1;

ρi−1p̌
1−p̂i−1

p̂i−1
≥ ρi−1p̌, i ≥ m, p̌ ≥ 1

2
> p̂i−1;

ρi−1p̌
1−p̂i−1

p̂i−1
, i ≥ m, p̌ ≥ p̂i−1 ≥ 1

2
.

We claim that

d+1
max
i=k

ρ′
i ≥

d+1
Y

i=1

max{p(t′i), 1 − p(t′i)}. (13)

Indeed,

RHS of (13)=



(1 − p̌)
Qd

i=1 max{p(ti), 1 − p(ti)}, p̌ < 1
2
;

p̌
Qd

i=1 max{p(ti), 1 − p(ti)}, p̌ ≥ 1
2
.

Whenp(tnew) = p̂ ≥ p̂i−1 ≥ 1
2
, (13) follows from Lemma 5.2.

Otherwise, it follows from the integration of above two equations.
So,C(D′) ⊆ C(D) ∪ {tnew}.
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Figure 4: Space consumption on synthetic dataset

6. EXPERIMENTAL REPORT
In this section, we present an experimental study with both syn-

thetic and real data comparing the five algorithms discussedso far,
namely, BS, CSQ, CCSQ, SCSQ, and SCSQ-Buffer. All the algo-
rithms are implemented in C and the experiments are performed on
a Linux server with Pentium 4 CPU (2.4GHz) and 1G memory.

Results on synthetic data.We created a synthetic dataset contain-
ing 1,000,000 tuples. The rank of each tuplet is randomly gener-
ated from 1 to 1,000,000 without replacement and the probability
p(t) is uniformly distributed in(0, 1).

Figure 3 shows the number of tuples in the compact set for the
Pk-topk query for this dataset, ask increases. We can see that it is
quite small and basically linear ink. This justifies our assumption
that H is usually much smaller than the size of the dataset. Note
that the previous studies [33, 20] also observed similar behaviors
on the size of the compact set.

Next, we feed the dataset in a streaming fashion to each of the
synopses and measure their space consumption and processing time.
Figure 4 shows the space consumption of the synopses with vary-
ing k and varying window sizeW , respectively. For simplicity,
when calculating the space consumption we only counted the tu-
ples and the arrayr, assuming that each tuple takes 6 bytes and
each array entry takes 4 bytes. Keep in mind that, in real appli-
cations, the tuples could be much larger as it may contain multi-
ple attributes including long fields like texts. So the sizesfor the
synopses shown here are only for comparison purposes; the actual
sizes will be much larger and application-dependent. The exper-
imental results agree with our theoretical bounds in Table 2very
well: BS is the largest, and its size is dominated by the window
sizeW , irrespective tok. CSQ reduces the size considerably com-
pared with BS, except for very small window sizes. All the other
synopses are basically comparable in terms of size, all of which are
significantly smaller than CSQ and BS. In general, we observea
space reduction of 2 to 3 orders of magnitude from BS to CCSQ
and SCSQ/SCSQ-Buffer on large window sizes.
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Figure 5: Per-tuple cost on synthetic dataset

Figure 5 shows the per-tuple processing cost of the five meth-
ods. We can observe that CSQ and CCSQ runs slowest, due to their
cubic dependency onk (sinceH is roughly linear ink). SCSQ
is better, since the dependency onk is quadratic. BS and SCSQ-
Buffer runs the fastest. Interestingly, although they havethe same
asymptotic bound, we observe that SCSQ-Buffer actually runs even
faster than BS. This is a bit counter-intuitive since what BSdoes for
each tuple is very simple. It maintains all the tuples in the window
in sorted order (using two balanced binary tree), and simplyinserts
and deletes tuples in this tree as they arrive and expire. In addi-
tion, it rebuildsC(SW ) if it becomes invalid. The latter step is also
done in SCSQ-Buffer. The explanation is that although maintaining
a balanced binary tree is computationally easy, it is quite memory
intensive. When we perform an insertion or a deletion, many nodes
in the tree, possibly in different memory locations, are read and
written, causing a lot of cache misses. On the other hand, SCSQ-
Buffer is much more cache friendly, due to its small memory print
and the way it performs the batched updates. Another interesting
observation is that the per-tuple processing cost either remains the
same or even decreases as the window size increases. The reason
is that an incoming tuple has a smaller probability to affectthe ex-
isting compact sets when the window size is larger, thus saving the
computation cost. Similar phenomenon can also be observed in
Figure 7(b), 8(d), 9(d), and 10(d).

Results on real data.We used the International Ice Patrol (IIP) Ice-
berg Sightings Database3 to examine the efficiency of our synopses
in real applications. The (IIP) Iceberg Sightings Databasecollects
information on iceberg activity in North Atlantic to monitor ice-
berg danger near the Grand Banks of Newfoundland by sighting
icebergs, plotting and predicting iceberg drift, and broadcasting all
known icebergs to prevent icebergs threatening. In the database,
each sighting record contains the date, location, shape, size, num-
ber of days drifted, etc. It is crucial to find the icebergs drifting
for long periods, so use the number of days drifted as the ranking
attribute. Each sighting record in the database contains a confi-
dence level attribute according to the source of sighting, includ-
ing R/V (radar and visual), VIS (visual only), RAD(radar only),
SAT-LOW(low earth orbit satellite), SAT-MED (medium earthor-
bit satellite), SAT-HIGH (high earth orbit satellite), andEST (esti-
mated, used before 2005). We then converted these six confidence
levels to probabilities 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.4respec-
tively. We gathered all of records from 1998 to 2007 and result
in 44440 records. Based on it, we created a 1,000,000-recorddata
stream by repeatedly selecting records randomly. The experimen-
tal results on this real dataset are shown in Figure 6 and 7. We
observe very similar results as those on the synthetic data,which
demonstrates the robustness of our synopses.

3http://nsidc.org/data/g00807.html
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Figure 7: Per-tuple processing cost on real dataset

Other top-k queries. Finally, we also implemented the compact
sets for the other three top-k definitions: PT-k, U-kRanks, and U-
topk. We plugged them into our synopses and conducted exper-
iments on the real dataset. The results are shown in Figure 8,9,
and 10. Again, both the space consumption and processing time
have very similar behaviors as those on the Pk-topk query, which
testifies the generality of our framework.

7. RELATED WORK
Top-k Queries.Top-k queries on a traditional certain dataset have
been well studied in the literature. Numerous query processing
algorithms have been proposed[16, 26]. The threshold algorithm
(TA) [26] is one of the best known algorithms. It assumes thateach
tuple has several attributes, and the ranking function is a monotone
function on these attributes. TA first sorts the tuples by each at-
tribute and then scans the sorted lists in parallel. Each time a new
tuple appears, TA looks it up in all lists to calculate its rank. In ad-
dition, TA maintains a “stopping value”, which acts as a threshold
to prune the tuples in the rest of the lists if they cannot havebetter
scores than the threshold.

There are many recent development and extensions to top-k queries
under different scenarios. Babcock and Olston [4] proposedan al-
gorithm to monitor the top-k most frequent items in a distributed
environment. Das et al. [14] use views to answer top-k queries effi-
ciently. Xin et al. [31] remove redundancy in top-k patterns. Xin et
al. [32] also apply multidimensional analysis in top-k queries. Hua
et al. [19] define the rank of a tuple by the typicality and answer the
top-k typicality queries. A very relevant work to ours is the paper
by Mouratidis et al. [24], which presents a method to continuously
monitor top-k queries over sliding windows. However, same as all
of the other works listed above, it only considers certain databases.

Uncertain data management and top-k queries. Uncertain data
management [27] has received increasing attention with theemer-
gence of practical applications in domains like sensor networks,
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Figure 8: PT-k query on real dataset
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Figure 9: U-kRanks query on real dataset

5 10 15 20

1k

10k

100k

1M

S
pa

ce
 c

on
su

m
pt

io
n 

(b
yt

es
)

Parameter k

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(a) Space used (W = 105)

10000 100000

1k

10k

100k

1M

10M

S
pa

ce
 c

on
su

m
pt

io
n 

(b
yt

es
)

Window size

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(b) Space used (k = 20)

5 10 15 20

1E-6

1E-5

1E-4

P
er

-tu
pl

e 
pr

oc
es

si
ng

 c
os

t (
se

c.
)

Parameter k

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(c) Per-tuple cost (W = 105)

10000 100000

1E-6

1E-5

1E-4

1E-3

P
er

-tu
pl

e 
pr

oc
es

si
ng

 c
os

t (
se

c.
)

Window size

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(d) Per-tuple cost (k = 20)

Figure 10: U-topk query on real dataset

data cleaning, and location tracking. The TRIO system [29] in-
troduced different working models to capture data uncertainty at
different levels, with an elegant perspective of relating uncertainty
with lineage as an emphasis on uncertain data modeling. A good
survey on recent uncertain data algorithms is [2].

Cheng et al. [8] provided a general classification of probabilistic
queries and evaluation algorithms over uncertain data sets. Dif-
ferent from query answering in traditional data sets, a probabilis-
tic quality estimate was proposed to evaluate the quality ofresults
in probabilistic query answering. Dalvi and Suciu [12] proposed
an efficient algorithm to evaluate arbitrary SQL queries on proba-
bilistic databases and rank the results by their probability. Later,
they showed in [13] that the complexity of evaluating conjunctive
queries on a probabilistic database is either PTIME or #P-complete.

Ŕe et al. [28] gave a solution to answer SQL query over uncer-
tain databases. The idea for their method is to run in parallel several
Monte-Carlo simulations, one for each candidate answer, and ap-
proximate each probability only to the extent needed to compute
the correct top-k answers. However, they are only concerned with
the probability of a tuple appearing in the query results, and no
ranking function is involved.

There are three definitions proposed so far for uncertain top-
k queries based on a ranking function. Soliman et al. [30] first
defined two types of such top-k queries, named U-Topk and U-
kRanks, and proposed algorithms for each of them. Their algo-
rithms were subsequently improved by Yi et al. [33]. Hua et al. [20,
21] proposed another top-k definition, namely PT-k, and proposed
efficient solutions. The Pk-Topk query that we mainly focus in this
paper is actually a slight variant of PT-k. But we show how all of
the existing three definitions can be plugged into our framework.
All the existing works only study the problem of how to answera
“one-shot” top-k query on a static uncertain data set, with the ex-
ception of [7], which presents a fully dynamic structure to support
arbitrary insertions and deletions. However, the structure of [7]
has size linear in the data set since the goal there is to allowany
tuple to be deleted. In the sliding window model, the “first in, first
out” property has allowed us to reduce the space complexity sig-
nificantly. In addition, [7] is only concerned with U-Topk queries,
and the structure is quite complicated and theoretical in nature.

Uncertain data streams. As mentioned in Section 1, there has
been a lot of effort in extending the query processing techniques on
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static uncertain data to uncertain data streams [1, 9, 10, 11, 22, 23,
34]. Though there are papers on computing statistical aggregates
and clustering, there is still no work on top-k queries over uncertain
streams. Nevertheless, as we point out in Section 3, it is actually
not difficult to extend the existing top-k algorithms to the case of
unbounded streams. But in the more meaningful sliding window
model, the problem becomes much more difficult. To the best of
our knowledge, our paper is the first piece of work on uncertain
streaming algorithms in the sliding window model.

8. CONCLUSIONS
Top-k queries are arguably one of the most important types of

queries in databases. This paper extends the problem of answering
uncertain top-k queries on static datasets to the case of uncertain
data streams with sliding windows. We designed both space- and
time-efficient synopses to continuously monitor the top-k results,
and showed that all the existing top-k definitions can be plugged
into our framework. In the present paper, we adopted the simple
uncertain data model where each tuple appears with a certainprob-
ability independent of other tuples. In future, we are planning to
find solutions to cope with more complex uncertain models.

This paper only considers how to cope with sliding-window top-
k queries exactly accordingly to the definitions. Another future
direction is study the approximate versions of them [21], which
possibly allows for more space- and time-efficient solutions.
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