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ABSTRACT

Query processing on uncertain data streams has attractedo# |
attentions lately, due to the imprecise nature in the dateigeed
from a variety of streaming applications, such as readings fa
sensor network. However, all of the existing works on uraiart
data streams study unbounded streams. This paper takessthe fi
step towards the important and challenging problem of answe
ing sliding-window queries on uncertain data streams, \&itio-
cus on arguably one of the most important types of querieg-to
queries.

The challenge of answering sliding-window témueries on un-
certain data streams stems from the strict space and tinuireeq
ments of processing both arriving and expiring tuples irnkégeed
streams, combined with the difficulty of coping with the erpo-
tial blowup in the number of possible worlds induced by thearn
tain data model. In this paper, we design a unified framework f
processing sliding-window top-queries on uncertain streams. We
show that all the existing top-definitions in the literature can be
plugged into our framework, resulting in several succiyctapses
that use space much smaller than the window size, while ace al
highly efficient in terms of processing time. In addition be theo-
retical space and time bounds that we prove for these syappse
also present a thorough experimental report to verify theictical
efficiency on both synthetic and real data.

1. INTRODUCTION

It has become an important issue to process uncertain (proba
bilistic) data in many applications, such as sensor netsyaikta
cleaning, and objects tracking. For a given uncertain @atdsere
are many possible instances called worlds, angtsible worlds
semantics has been widely used [12, 20, 28, 29, 30, 33].

Consider a radar-controlled traffic monitoring applicatizvhere
a radar is used to detect car speeds with possible erroreddnys
nearby high voltage lines, close cars’ interference, huoparators
mistakes, etc. It implies that a speed reading is corredt vettain
probability. Table 1 shows a simple uncertain dataset fospaed
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readings. For example, the 4th record indicates that a BandNo.
W-541) runs at speed Z(10) km per hour through the monitoring
area at AM 10:38 with probability 0.4.

ID Reading Info Speed &10) | prob.

1 | AM10:33, Honda, X-123 5 0.8

2 | AM 10:35, Toyota, Y-245 6 0.5

3 | AM 10:37, Mazda, Z-341 8 0.4

4 | AM10:38, Benz, W-541 2 0.4

Table 1: 4 Radar reading records
PW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Figure 1: The possible worlds at time 4

For the 4-tuple uncertain dataset given in Table 1, therdrare
total 16 possible worlds for all the 4 speed readings: 8, &}
2. Here, a possible world is a set of speed readings assoeisite
a probability of the set, which is computed based on both the e
istence of all the tuples in the possible world and the absefic
all the tuples in the dataset that are not in the possibledyait-
suming mutual independence among the tuples. Figure 1 shlbws
the 16 possible worlds. In Figure 1, the top line numbershal|16
possible worlds; a possible world is of a subset of the 4 spesd+
ings, represented in the middle, and is associated with euroog
probability of the possible world below. Consider thith possible
world that contains a set of 2 speed readingsind5. The prob-
abilities of the existences @f and5 are 0.5 and 0.8, respectively,
as given in Table 1. The probabilities of the absence afd2 are
both1 — 0.4. Therefore, the probability of th&0th possible world
becomed).144 (= 0.5 x 0.8 x (1 —0.4) x (1 — 0.4)).

Uncertain data streams. In many real application scenarios, the
collected uncertain data is returned in a streaming faslsioch as
the radar readings example in Table 1 and the collected sezes
ings from a real-time monitoring sensor network. These tage
data streams have attracted a lot of attention very recghtB;, 22,
23, 34]. Since large amounts of such streaming data couidearr
rapidly, the goal here is to design both space- and timeiefiic
query processing techniques. On the other hand, strearaitagisl



also highly time-sensitive: each item arrives with a tiraegp, and
people are generally more interested in the recent tupkesttiose

in the far past. There are two models for dealing with the tase
pect on data streams. One is the so-catlete-decayingnodel,
which assigns a weight to each tuple that is exponentialyedes-
ing over time. This model usually works together with statal
aggregates [10, 11], such as averages, histograms, hetesshi
etc., but may not be well defined for many other general da@ba
queries such as top-queries. The other model is the more popular
sliding windowmodel, where we are interested in evaluating the
query on tuples that have arrived in, say, the last 24 houtss T
model is more general, since any query defined on a statisetata
can be also defined with respect to a sliding window. In aduijti
sliding-window queries are usually required todmntinuousi.e.,
the user should be alerted whenever the query result charges
that he/she always has the up-to-date query result for thrertu
sliding window.

Although query processing in sliding windows has been thor-
oughly studied on certain data streams (see [17] and theerefes
therein), sliding-window queries on uncertain streamsstitean
untapped territory, due to the many challenges brought bwtifict
space and time requirements of processing both arrivingeapil-
ing tuples in the high-speed stream, combined with the diffyc
of coping with the exponential blowup in the number of poksib
worlds induced by the uncertain nature of the data. Previarks
on uncertain streams [9, 22, 23, 34] only deal with unbounded
streams but not sliding windows. In this paper, we make adiegi
towards answering sliding-window queries on uncertaieastrs,
focusing on arguably one of the most important types of @ser
top-k queries.

Top-k queries on uncertain data. Top-k queries have been re-
cently studied in the setting of uncertain data. Given a irapk
function, the goal is to find the top+ranked tuples in a given uncer-
tain dataset. Soliman et al. [30] defined two types of kajpieries
over a uncertain dataset, called U-Fopnd U4Ranks. Hua et al.
[20] defined a probabilistic threshold tdpeuery, denoted PE-
We introduce them in brief below.

The U-Topk query returns the top-tuples in all possible worlds
with maximum probability. Lett = 2, the query U-Tog upon
the uncertain dataset (Table 1) retufts 5}, because this vector
is ranked top in th&@th and10th possible worlds, with probability
0.24 (= 0.096 + 0.144). The probability0.24 is higher than that
of any other two speed readings. For example, it is higher tha
probability of havings and6 as the top-2, whose probability (2
(= 0.064 + 0.096 + 0.016 + 0.024), as8 and6 are ranked top-2
in the 1th, 2nd, 5th, and6th possible worlds.

The U%Ranks query returns the winner for ti¢h rank for all
1 < i < k. Consider the same example. When= 2, the U-
kRanks query upon Table 1 returfi$, 5}, because the probability
of having8 as the winner in the first rank is higher than any other
speed readings, and the probability of havinas the winner of the
second rank is higher than any other speed readings.

The PT% query returns all the tuples with maximum aggregate
probability greater than a user-given threshpjdvhere the aggre-
gate probability represents the sum of probabilities okiag as
one of the topk ranked tuples in all possible worlds. Consider Ta-
ble 1, the answer i$5, 6, 8}, with probability 0.64, 0.5, and 0.4,
respectively (assuming = 0.3). The speed reading 5 is ranked
in top-2 in the3rd, 4th, 9th, 10th, 13th, and14th possible worlds,
with the aggregate probability.64 (= 0.064 + 0.096 + 0.096 +
0.144 + 0.096 + 0.144).

The three topk query definitions have different semantics and
may possibly give different results on the same uncertatasgd

The intention of U-Tog is to find the most likely toge ranking
list in a random possible world, and to preserve such ranking
der. U4Ranks considers the winner in every individual rank, and
PT-k considers the probability of being one of the thpit is not
the focus of this paper to argue which definition is bettenttie
others, or to propose yet another definition. Indeed, thequder
choice should probably be application-dependent. Our, goethe
other hand, is to design a unified framework for processiiulig)-
window top# queries, which can be coupled with any of the defi-
nitions above.

To make the presentation concise, we use thé Rliery to il-
lustrate our framework; discussions on the other tapueries are
deferred to Section 5. However, one undesirable problerh thig
PT-k query is that the number of tuples returned may differ a lot
over different databases even when using the same threghlolel
The user must set the threshold carefully to make the resutton-
tain k tuples. Therefore, we study a slight variation of it, namely
theprobabilistic k top-, or simply Fe-topk. In the Fe-topk query,
we do not set a threshold, but retusuples with the highest aggre-
gate probabilities being one of the tépranked tuples in a random
possible world. Formally, the#Rtopk query is defined as follows:

Definition 1.1. Probabilistic k top-k query (Fc-topk): Let D de-
note an uncertain database)V the possible world space fdp.
Let PW (t;) C PW denote the set of possible worlds containing
t; as one of its topgk ranked tuples. A P-topk query returns a set
of k tuplesT = {t',--- ,¢*}, satisfying3" , pyy i) Prlpw] >

> pwepw (i) Pripw], foranyt; € T andt; ¢ T

The Pk-topk query returns thé: most probable tuples of being
the top4 among all. For example, in the uncertain dataset of Ta-
ble 1 and withk = 2, the answer i§5, 6}, as they are the two with
the highest probabilities of being among the fgpwith probabili-
ties 0.64 and 0.5, respectively.

All the existing approaches for processing topueries [20, 21,
28, 30, 33] are designed for static uncertain datasets, Enithea-
pable of handling streaming data. Directly applying thevimas
solutions on sliding windows would require storing all thuples
within the window, which is quite memory consuming. One majo
challenge is that the number of possible worlds that chasgeea
window slides for one timestamp is huge. Assuming that theze
W tuples in the window, then the number of possible worldsis
When a new tuple arrives and an old tuple fades (t,of the 2"V’
possible worlds will change.

Consider a continuouskPtopk query withk = 2 over a slid-
ing window of sizeW = 3, evaluated on the example in Table 1.
Initially the first three tuples arrive (speed readings aré, and
8). The F-topk answer is{6,5}. Then, when the fourth tuple
(speed reading) arrives, the first speed readibgexpires, and the
possible worlds are built ove[6, 8, 2}. Now the top2 answer be-
comes{6, 8}. Itis important to note that the highest speed reading,
8, is not included in the top- answer in the first sliding window,
but is included in the tog- answer in the second sliding window.
This example shows that in the sliding-window setting, idesrto
lower the memory requirement, we need a delicate and efficien
mechanism to decide which tuples shall and shall not be lapt f
answering the query as the window advances through time.

Our contributions. In this paper, we design a unified framework
for processing continuous tdpqueries in a sliding window over
uncertain data streams. All of the previously proposediatefi-
nitions can be plugged into our framework. Our frameworkase
posed of several space- and time-efficient synopses witraple
bounds. As depicted in Section 3, while it is relatively easy
handle arriving tuples, it is much difficult to cope with teplexpir-



ing. We need a carefully designed synopsis storing the mimim  with expiring tuples.

amount of information while sufficient for answering the gue Suppose the tuples in an uncertain datd3etret; <y --- <y
continuously at all times, which can also be maintained iefiity. t,. Denote byD; the subset oD containing the first tuples inD,
After formally defining the problem (Section 2), we first show D; = {t1, -+ ,t;}. For0 < j < ¢ < n, letr; ; be the probability
how the previous techniques can be adapted to be self-rivabta that a randomly generated world frof; has exactly; tuples. It
with respect to insertions (Section 3). This automaticgliyes us is clear that the probability that ranks thej-th in a randomly

a solution if tuples only arrive but never expire, which @sponds generated world fronD isp(t;) - 7i—1,j-1.

to the case of unbounded streams (or the so-cadledmark win- — pefinition 3.1. The compact set’(D) for the Fe-topk query on
dows. However, handling deletions is inherently much more dif- 5, ncertain data sdb is the smallest subset dd that satisfies

fti)cult than inf‘ertitlj(ns. .In fact, if (:]gletipnshare ?(;pitrart)ezje is no the following conditions. (1y¢' € C(D) andt” € D — C(D),
etter way than keeping everything in the sliding windowmcsi # <5 t". (2) Letd = |C(D)|, t4 the tuple with the lowest rank in

each tuple would have a chance of being in the query resutitss, T C(D). There aret tuples inC(D), and each such tuple, has
in order to lower the space complexity, we need to exploititite '

portant property of a sliding window that tuples arrivingsfimwill f > ) 1
also expire first. In Section 4, we propose a series of symgseh p(ta) Z famtizt = Z it @

one building upon the previous one, that progressively awer 1=k 1si<k

the space and time complexities. These synopses are thésresu .

of a novel combination of several techniques including data- Note thatD may not always have a compact set, that is, even
pression, buffering, and ideas from exponential histogrgirb]. if we put all tuples intoC' (D), (1) still cannot be satisfied. When

We also analytically prove their space and time bounds, sigpw  there exists a’'(D) such that (1) holds, we say that admitsa
that although our synopses use much less space than thewvindo compact set.

size, we can still match the best running time one can hope for  Itis not difficult to obtain the following recursion [20, 33]
even if linear space is allowed. Our analytical results hentfur-

ther supported by an experimental report in Section 6, where o f(ti)ri*’j’l + A =pt))ria, i EJ. é 8’ 2
observe order-of-magnitude improvements over the previmiu- Tig = 0 élgej =0 (2

tions adapted to the sliding window model. In Section 5, we fu

ther discuss how the other tdpdefinitions can be plugged intoour  Thus we can use dynamic programming to compute all the entrie
framework. Finally, we review the related work in Sectionefdre in the arrayr, as well asC(D), in time O(kd). We first show that

concluding the paper. if D has a compact s€t(D), then we do not need to look at tuples
not in C'(D) in order to answer aftopk query.

2. PROBLEM STATEMENT Theorem 3.1.The compact set'(D) is sufficient for answering a

LetT be an uncertain stream containing a sequence of tuples, Pg-topk query onD.

12, N where the superscripts denote the timestamps of the
tuples Letf be a ranking function. We usé <; 0 if f(t') > PROOF Consider any tuple;, : > d. Let¢, be the probability
f(#7), and we say'’s rank is higher thar’’s. In a similar fash- that exactlys tuples from{t41,--- ,¢;—1} appear. The probabil-
ion, t* - ¢/ meanst’s rank is lower thart’’s. Without loss of ity thatt,’s rank isj is p(t:)(3_7_, ra,1—1&;—1). Then, the proba-
generality, we assume that the ranks of all tuples are unigbe bility of ¢; being ranked at any position between 1 @rid
membership probability of tupleis denoted ag(t). . .

A sliding window starting at position and ending ay is de- —
noted asS[i, 5], i.e., S[i,§] = (t', ', .- ,¢7), fori < j. The Z <Z’“dl 165 l) =p(t:) D <Td’llz§i>
size of the sliding window isvsize(S[i,j]) = j — i + 1. For J=t =1 =1 =
the sliding windowsS'z, 5], PW(S[i, j]) denotes its possible world
spacePW(S[i, j]) = {PWi, PWa,---}, where PW; is a pos- < p(t) Zrd,jq < Zrd,jfh

sible world that is a subset of tuples i, j]. The probability of
such a possible worl®W is given asPr(PW) = Il;e pwp(t) X
Megpw (1 = p(2))-

Problem statement. Given an uncertain data stregfn= (', ¢, Thus if D has a compact set'(D), then we only need to run
.,#"), and a sliding window siz&V’, the goal is to answer the  the dynamic program ofi’( D) to compute the R-topk results in

top-k query for every sliding windowS[i — W + 1,1] asi goes time O(kd). This algorithm is actually similar to that in [20, 21,

from W to N. For now we will use tuple-based WIndOWS where  33], which also show that except for some pathological Gabes

at timei, t' arrives whilet’~"" expires. But all our algorithms can  compact set almost always exists and much smaller than thiewh

be easily extended to time-based windows. We will mosthu$oc  data set. So answering a tépguery is usually quite efficient, and

on the R:-topk query, but will also discuss extensions to the other we do not need to look at the entire dataset at all, assuming of

queries in Section 5. As with all streaming algorithms [3gmory course the tuples are already sorted in rank order.
consumption is the most important measure; but at the sanee ti

we would like the processing time per tuple to be as low asipless

where the first " is becausezf;g &<1. O

Example 3.1. Consider a R-topk query over the dataset in Table
1,k = 2. After sorting,t; = 8, t2 = 6, t3 = 5, andt4 = 2. Ap-
plying (2), we calculate the arrayusing dynamic programming:

3' COMPACT SET T0,0 = 1, To,1 = 0, r1,0 = 0.6, 1,1 = 0.4, r2,0 = 0.3, 2,1 = 0.5,
This section first defines theompact seta basic concept in all r3,0 = 0.06, r3,1 = 0.34. Now, we find that whenl < 3, there
our synopses. It turns out if there are only insertions, dngle does not exist any tuple, (a < d) satisfying (1). Whenl = 3, all
compact set is sufficient for maintaining the tb@nswers. How- of three tuplest, t2, andts) are valid¢.. So, the compact set for
ever, we need multiple compact sets combined together te cop that dataset i$ti, t2,¢s}. m|



However, [20, 21, 33] only considered the static case. lbis n
clear at all whether this compact set can be self-maintaasetl-
ples are inserted int®. It turns out that to answer this question, a
much more careful analysis is required.

Self-maintenance of the compact set/Ve first need to study some
important characteristics of the array We also study the change
ratio ¢; ; of adjacent entries for any tuplg, namelyg; ; = Zed+L,

T'i,j
Specifically, we can prove the following properties.
Lemma 3.1. The value of;;,; is monotonically decreasing for any
tuplet;, i.e.,r?; > rij_1 - 141, forj > 1.

PROOF Wheni = 1, r;0 = 1 — p(t1), 7,1 = p(t1), and for
anyj > 1, r;; = 0. So, wheni = 1, the lemma holds.
Assuming the lemma is true fér we consider the case oft 1.
If 7+ 1 > 4, itis trivial because; ;11 = 0. So, we only need to
analyze the situation whefie< j < i. By (2),
A = T7.'2+1,j — Tit+1,5-1Ti+1,5+1
= (p(ti+)ri—1 + (1= p(tis1))ri )
—(p(tis1)rig—2 + (1 = p(tiv1))riz—1) -
(p(tit1)ris + (1 = p(tiv1))rij+1)
= (p(ti+1))*(rf jo1 — rij—2riy)
+(1 = p(tis1))* (18 — rij—1rige1)
+p(tiv1)(1 = p(tiv1))(rig—17mis — Tij—2Tij+1)

2 g
i,j— i,

> p(tir1)(1 = p(tis1))(rij—17i,5 — —L2——-) (3)
Tij Tig—1

= 0.

Note that we assumed ;1 > 0 andr; ; > 0in (3). Otherwise,
ri,j—2 = 0, we still haveA > 0. [

Lemma 3.2.For any two tuples;, ¢; satisfyingt; <y t;, we have
g, < gji, wherel > 0,i.e.,r 41750 < rigrjitr.

PROOF First, consider the cage= i + 1. We have

Ti,i+1 Ti41,14+1
qil — Qi1 = ——— — ——— ——
Tl Ti+1,1
= ———— (o174 1,0 — Ti T 1,041)
Ti,lTi4+1,1
p(tit1) 2
= ————(rigp1rigi—1—15,) <0 (Lemma3.}
TiiTi41,1+1

Repeating the same step iteratively proves the lemma for any

j>i4. O

Lemma 3.3.For any tuplet;, the series; ; is unimodal, i.e., there
exists somen such that; ; is monotonically increasing when<
m while monotonically decreasing whegn> m.

PrRoOOF According to Lemma 3.1, the value of ; decreases
monotonically. Letn be the maximum such that ,, < 1, then
it is not difficult to verify thatm meets the requirement in the
lemma. O

Lemma 3.4. For any tuplest;, t;, t; <y t;. The peak point of the
corresponding series (in Lemma 3.3) fgiis no later thant;.

ProoF Follows from Lemma 3.2. [

Theorem 3.2. Let C'(D) be the compact set db, let ¢4 be the
lowest-rank tuple inrC' (D), and lett,.., be a new tuple to be in-
serted intoD. ThenC'(D U {tnew }) = C(D) if tqg <5 tnew, and
C(D U {tnew}) C C(D) U{tnew} If tnew <y ta.

PROOF Letr’ be the array for” (D) U {t,.w }. Let us consider
the following cases in turn.

Case 1 tnew =5 tq. Thenry; = rj;foralll < i < d,
SO7q—1,1—1 andrq,;—1 remain unchanged far < [ < k. Thus,
C(DU{tnew}) = C(D).

Case 2 For all thet,, that meets (1)ta > tnew >5 ta. We
will show that (1) still holds on’. For1 < I < k, we have

7’:1,[71 = p(tnew)rd,l72 + (1 - p(tnew))rd,lfl-

Summing over all,

Z a1 = Z Tai-1 — P(tnew)Tdk—1, 4)

=1 =1

namely, the RHS of (1) is reduced while its LHS stays the same.
So (1) still holds on’, henceC'(D U {tnew}) € C(D) U {tnew}-
Case 3 There exists one or morg, that meet (1) such that
ta >f tnew. NOw both the LHS and RHS of (1) change, so we
need to be more careful.
First, for any such.,, we have

7“;71,171 = p(tnew)ra—1,1—2 + (1 — p(tnew))ra—1,1-1.

Summing over all,

k k
Z 7“:171,171 = Z Ta=1,1-1 — P(tnew)Ta—1,k—1-
=1 =1
So the LHS of (1) decreases by a fraction of

1_ p(ta) Zf:1 7‘;,17[71 _ p(tnew) Taflykfl

P(ta)Zf:l Ta—1,1—1 Zle Tafl,l—ll

Similarly, by (4), the RHS of (1) decreases by a fraction of

Td,k—1
P(tnew)ki-
Zl:l Td,lfl
Next we show that
Td,k—1 Ta—1,k—1
(%)

S Tdie1 Y Tamtio1

thus establishing the fact that (1) still holdsdn
We prove (5) by induction. For the base cdse- 2, by Lemma
3.2, we have

Td,1 _ Td,0 _ Td,0
— T 71,17'd,0
Td,0 + Td1 Td4,0 + Td,1 Tdo0 + o
a—1,
Ta—1,1

Ta—1,0 + Ta—1,1

Next we considelk + 1 assuming (5) is true fok. Again by
Lemma 3.2, we have

Ta—1,k"d,k—1

Td,k Ta—1,k—1
Py k Td k—1 Ta—1,k"d,k—1
> Ta—1 pIy- Ta—10-1"""""7 Ta—1,k—1

Ta—1,k
k+1 :
21:1 Ta—1,1—1

So (5) holds for alk, and the theorem is proved[]

Theorem 3.2 gives us a very simple algorithm for maintaining
the compact set if tuples are only inserted iftdut never deleted.
For an incoming tuplé,c.,, we first check iftpe.. <7 ta. If SO
then we recompute the arrayon C (D) U {tnew }, Which gives us
the updated compact S8{ DU{¢,..., }) and also the updated tdp-
results. Otherwise we simply discatgl., knowing that it will not



affect the query results. However, the presence of expitipies
make the problem much more difficult, since if a tupleGi{D)
expires, this whole compact set is useless and we need toutemp
a new compact set from. Thus simply using one compact set for
a sliding window implies that we cannot discard any tupleha t
window until it expires, using memor§2(W). In the next section,
we present our sliding-window synopses, which combinegipiel
compacts sets together, so that we can safely discard npbss i
the window while still being able to maintain the up-to-dgteery
results at any time as the window slides through time.

4. SYNOPSES FOR SLIDING WINDOWS

The previous section shows that the compact set is selftaiain
able under insertions. However, if a tuple in the compacteget
pires, then there is no way to reconstruct it without maimitag tu-
ples outside the compact set. Then the question is, how nthey o
tuples do we need to keep? This section will focus on ansgerin
this question.

First of all, notice that in the worst-case scenario, forrepie
when the tuples always arrive with decreasing ranks andedsirg
probabilities, any tuple will be in the top-result at some point in
time as the window slides. In this case, any synopsis hasrtemre
ber everything in the window in order to avoid incorrect ques-
sults. So itis hopeless to design a synopsis with a sublineest-
case space bound. Therefore, we will assume that the tuples a
in a random order. Thisandom-order streanmodel has received
much attention lately from the stream algorithms commufii;,

6, 5], mainly because the worst-case bounds for many strepmi
problems are simply too pessimistic and thus meaninglesse T
random-order stream model has been argued to be a reasapable
proximation of real-world data streams while often allogifor
much better expected bounds. This model is an ideal choidddo
study of our problem since as shown above, in the worst chses t
is really nothing better one can do than the naive approabichw
simply keeps all tuples in the sliding window.

Before presenting our solutions, we first analyze the diaeletp-
tation of the existing technique to the sliding window sejtiwhich
we refer to as th®ase Synopsi®r theBS To make the analytical
comparison with our synopses easier, we Hst® denote the max-
imum size of the compact sets that are maintained in the sysop
As argued in [33, 20], although in the worst caggé= W, but on
most datasetd] < W. As discussed in the previous section, BS
needs to keep all thB tuples in the window (in the rank order)
and its compact set’. The arrayr takesO(kH) space, thus the
total space of BS i®(W + kH), which is effectivelyO (W) since
H < W. When the window slides, if either the expiring tuple is
in C, or the incoming tuple’s rank is higher than the lowest rahke
tuple in C, then we recomput€’ from all the tuples in the win-
dow. SinceC keeps the highest-ranked tuples in the window, either
event happens with probabilit9(H /W), so the expected cost of
maintainingC' is O(kH?/W). Maintaining the tuples in the rank
order takegD(log W) time per tuple. Thus we have the following.

Lemma 4.1.BS requiresD(W + kH) space and spends expected
O(kH?/W + log W) time to process each tuple.

In the following subsections we present our sliding-windsym-
opses. Each of them builds upon the previous one with nevsjdea
progressively improving either the space complexity otecess-
ing time. Our final synopsis requirgS(H (k + log W)) space
and has a processing time@{kH?* /W + log W). So it matches
the processing time of BS while having a much lower space com-
plexity. To appreciate this result, the reader is reminded most
streaming algorithms, e.g., most sketches [3, 25], reduigber

Algorithm 1 MaintainCSQ

1: Tuple setD = (J; compact set queug = (J;
2: for each arriving tuple

3. inserttinto D;
4: if (successfully create a compact 68tD) for D)
5: append”'(D) to U;
6 remove tuples iD older thant” (includingt’’), where
t" is the oldest tuple il (D);
7. for (each compact s&t(S;) € ¥ from new to old)
8: if (¢ <; lowest ranked tuple i€(S;))
9: updateC'(S;) := C(C(S;) U {t});
10: if (C'(S;) = the previous compact set i)
11: removeC'(.S;) from ¥;
12: else
13: break;
14: if (the expiring tuple=s C'(Sw))
15: removeC'(Sw ) from ¥;
16: C(Sw) := first compact set ir¥;
17: compute the array on the newC'(Sw);

running times than the naive approach in order to achievesjmee
complexity.

4.1 Compact Set Queue

Our first synopsis, called th€ompact Set QueugSqQ is the
simplest of all but forms the basis of the more advanced ssemp
Let S; denote the set of the lastuples in the sliding window. In
the CSQ, we simply keep all the distinct compact §&ts’; ) for all
i =1,...,W. We only keep the array for C'(Sw) from which
we can extract the top-results. Since we have the compact set for
eachsS;, when a tuple irC(Sw) expires, we can mov€'(Sw—_1)
forward to become the ne®@(Sw).

Algorithm 1 describes the detailed algorithm to maintaie th
CSQ. We maintain a queuk of all the distinct compact sets. The
tuple setD temporarily keeps the newest tuples. Initiallydoes
not admit a compact set. As tuples arrivelatD will have a valid
compact set at some point. When this happens, we ctegt®),
and append it tal. Tuples inD but older than the oldest tuple in
C(D) (including the oldest tuple i’(D)) are removed fromD
(lines 1-6). Note that after the removdD, does not admit a com-
pact set anymore. Therefore, whénhas collected enough new
tuples, the new compact set it generates must be differemt fine
existing ones inP. Next we update all the compact setdlinin turn
according to Theorem 3.2, while removing duplicates (life$3).
Finally, we check if the expiring tuple exists @(Sw ), if so we
removeC(Sw) from ¥, and the next compact set ih becomes
the newC'(Sw) (lines 14-17).

Lemma 4.2. The expected number of distinct compact sets in CSQ
is O(H log W); the expected number of compact sets that need to
be updated per tuple i©(H).

PROOF Let X; be the indicator variable such that, = 1 if
C(S;) is different fromC(S;+1), and X; = 0 otherwise. It is
obvious that the expected number of distinct compact sels im
E[Zfil X;]. The eventC(S;y1) # C(S;) happens only when
the rank of the oldest tuple ifl; ;1 is higher than the lowest ranked
tuple inC(S;). Because”'(S;) contains the< H highest ranked
tuples inS;, the occurring probability of this event is at mdsy/i.
Hence,

E[X;] = Pr[X; = 1] < max{1, H/i},



and

E

Y 1 1
Xi|<H+H(=4+ -+ =) =0(HI .
; }_ + <H+ +W) O(H log W)

Now consider the arrival of a new tupteLetY; be the indicator
variable such that; = 1iff X; = 1 andt affectsC(S;+1). For the
latter to happen, must rank higher than the lowest ranked tuple in
C(Si+1), soPrY; = 1|X; = 1] < max{1l, H/(¢ + 1)}. Hence,
the expected number of compact sets affectediby

w w
E ZY} = ) Pr[X; =1]Pr[Y; = 1]X; = 1]
=1 =1
1 1
< 2
s H+H (H(H+1)+ +W(W+1))
< H+H2-%:O(H).

O

Theorem 4.1.CSQ require®( H? log W) space and can be main-
tained in timeO (kH?) per tuple.

PROOF Since each compact set has si2gH ), and the array
has sizeD(kH), the space bound follows from Lemma 4.2. Each
compact set can be updated in ti@ékH) and there areD(H)
of them that need to be updated, so the total time for the egdat
O(kH?). O

4.2 Compressed Compact Set Queue

Although CSQ only contains distinct compact sets, therdilis s
a lot of redundancy as one tuple may appear in multiple compac
sets. In theCompressed Compact Set Queue (CCSE@) try to
eliminate this redundancy by storing only the differencenaen
two adjacent compact sef¥(S;) andC(S;—1). More precisely, if
C(S;) # C(Si-1), we keep bot A = C(S;) — C(S;—1) and
A7 = C(Si—1) — C(S;). Now we can discard all th€'(.S;) in
the queuel except the newest one.

We need to bound the total size of these differences. Fimgtes
S; has only one more tuple tha#y_i, by Theorem 3.2, it is clear
that|A]| < 1. By Lemma 4.2, the total number of nonempty
A} is O(H log W), so we have!", |AF| = O(H logW). To
bound the total size of all th& ", we need the following property.

Lemma 4.3. If tuple ¢ appears both irC(S;) andC(S;), i < j,
then it appears in all compact sets betwe@(s;) andC'(S;), i.e.,
te C(S) foralli <1<j.

PROOF Becaus&; D S;, by repeatedly applying Theorem 3.2,
we haveC(S;) C C(Si) U (S; — 1), i.e., any tuple inC'(S;) is
either fromC(S;) or from S; — S;. Foranyt € C(S;) N C(Sj),
sincet € S; andS; N (S; —Si) = 0, we musthave € C(S;). O

Thus, as we go from'(S1) to C(Sw ), once a tuple disappears,
it will never appear again. So we have

w w
D IATI<H+Y AT = O(HlogW).
i=1 =1

PrROOF As argued above, storing all the compact sets with com-
pression require®(H log W) space. We also need the array
which takesO(kH) space.

To see that the processing time remains unchanged, justhaite
Lemma 4.2 still holds, and we can restore ed@&fs;) in ¥ by
making a pass oveh;” and A ", update it, and compute the new
Af andAj;, allintimeO(kH?). O

4.3 Segmental Compact Set Queue

With CCSQ, we have lowered the space complexity of the synop-
sis to almost minimal: we only need one arregnd keep) (H log W)
tuples, as opposed to BS which stores all ietuples. However,
the maintenance cost of CCSQ is still very high. In the next tw
advanced synopses, we try to improve the processing timée whi
maintaining the low space complexity.

We notice that the high computation complexity is due to the
fact thatO(H) compact sets need to be updated per incoming tu-
ple. However, only the oldest compact $&(Sw ) is needed to
extract the tope query results; all the other compact sets simply
act as a continuous “supply” f@r(Sw ) when it expires. For these
compact sets, we actually do not need to maintain them gx#|
long as we have a super set for each of them, which can be main-
tained much more efficiently, then we can still reconstruekactly
when it becomes the oldest compact set in the queue. But on the
other hand, we do not want these super sets to be too largelédevi
the space constraint, so we need a carefully designed mieohtm
balance space and time. With this intuition, we introduceraxt
synopsis, th&egmental Compact Set Queue (SCSQ)

In SCSQ, we only maintain a small number of distinct compact
setsC(Se,), ---, C(Sp,), forl < 4y < --- < £, < W. For
eachi, we also maintaim\,,, a set of tuples ib,, , — S, (define
£n+l = W) such thaiC(Sj) - S(i U A(i forall ¢; < 7 < €i+1-
Note that any tuple it\,, must rank higher than the lowest ranked
tuple inC(Sy, ). Finally, we always keep’(Sw ) and its associated
arrayr, from which we extract the tog-results.

We maintain the following invariants in SCSQ throughoutetm

(6)
@)

The correctness of SCSQ follows from its definition and The-
orem 3.2: Wheneve€'(Sw ) expires, since the neW'(Sw ) is a
subset olC'(S,,) U Ay,,, we can rebuild it in timeD (kH).

Whenever invariant (7) is violated, we do a merge by setting
Ao, := Ag, UAg, +1U{t'}, wheret' is the oldest tuple i€ (S¢, +1),
and then removing’(Se, . , ), A¢, ., - Itis not difficult to verify that
Ag,UC(S,,) now contains all the tuples needed to cover &tfy; )
for ¢; < j < 4,42, and both invariants (6) and (7) are restored.

The procedure to maintain the SCSQ is actually very simdar t
that of CSQ, the only difference is now we only updét€syw ) and
C(S,,) foreachi = 1,...,n. Next, if C(S,) has changed, tuples
in A,, are simply removed if their ranks are lower than the lowest
ranked tuple irC'(Se; ). Whenever invariant (7) is violated, we do a
merge as described above. FinallyCif Sw ) expires, we compute
anewC(Sw) from C(Se,,) U Ay, .

Example 4.1. Figure 2 shows how the SCSQ evolves over time.
For illustration purposes we assumie = 3 and all compact sets
have exactly the 3 highest ranked tuples. The queue corttams

|Al¢| <H,
|Al1',| + |Al1:+1| > H,

fori=1,...,n;
fori=1,...,n—1.

By this compression technique, we have reduced the space com Note thatH is not fixed in advance and may change over time.

plexity of CSQ by roughly a® (H) factor.

Theorem 4.2. CCSQ requiresD(H (k + log W)) space and can
be maintained in tim&(kH?) per tuple.

So we update and use a né whenever the maximum size of
the compact sets currently maintained in the synopsis @sahyg

a factor of 2. This does not affect the asymptotic bounds of ou
algorithms.



compact sets at time 87(S3) = {5,6,1}, As = 0; C(S1) =
{3,5,6}, Au = {8,7,9}. When tuplety arrives, the existing
two compact sets are shifted and updated’4s,) = {5,6,4},
C(S5) = {5,6,4}. Atthe same timeAs and A4 are also shifted
(but unchanged) to h&, andAs. SinceC'(S4) andC'(Ss) are now
the same, we deleté(Ss), and setAy, = As. A new compact set
is created”'(S3) = {5,6, 1} andAs = (). Next, we remove the ex-
piring tuple 8 fromA4. Since|As|+|A4| = 2 < H, we do a merge,
removingC'(S4) while updatingAs := AsUA4U{5} = {7,9, 5}
The final status is shown in Figure 2(b).

The following result is crucial in bounding the size and s
ing time of SCSQ.

Lemma 4.4.SCSQ maintains expecté{log W) compact sets.

PrROOF Under the random-order stream model, aliqf. . ., /.,
as well asn, are random variables. Below we show tlE{h]
O(log W).

Consider the stochastic process consisting of the sequeince
random variabled;, /s, ¢s5,.... We say that it is a good event if
l2;41 > 202;,—1, and a bad event otherwise. It is clear that the se-
quence will terminate before we haleg W good events. We con-
struct a sequence of indicator variablg€s, Xo, ..., whereX; = 1
iff the i-th event is good, and l&t,,, = X; + --- + X,,,. Then
E[n] < 2-E[arg min, {Y,» = log W}].

Now we focus on boundinE[Y]. Consider the bad evefi; 1 <
209;,—1. If this happens, due to invariant (7), there must be more
than H tuples inSy,, , — S¢,, , that rank higher than théf-
th ranked tuple inS,,, ,. If so, among the to§2H) ranked tu-
ples inSy,, ,, more than half of them must be in the older half
Sae,; 1 —Se,; . This occurs with probability less than 1/2. There-
fore, for anyi, the probability that theé-th event is bad is less than
1/2, or equivalentlyPr[X; = 1] > 1/2.

Although X, X5, . .. are not necessarily independent, the argu-
ment above holds for eack; regardless of the values &f;, j # i.
ThereforeY,, is stochastically greatethan a binomial random
variable Z,, ~ binomialm,1/2): Y, > Zm. The expectation
E[arg min,, {Y,, = log W}] can be written as

Z Prlarg min{Y;, = log W} > 1]
i>1

> Pr[Yio1 < logW]

i>1

< 4logW+1+ > Prl¥; <logW]
i>4log W

< O(logW)+ > Pr[Zi <logW] (Yo > Zim)
i>4log W

< O(ogW)+ > e (/21 ™%/i (Chemoff bound)
i>4log W

< O(logW) + Z e /1% = O(log W),
i>4log W

hence the proof. (J

Theorem 4.3. SCSQ require®(H (k + log W)) space and pro-
cesses each tuple in tindk H log W).

PROOF Since the array has sizeO(kH) and each compact
set has siz€(H), the space bound then follows from Lemma 4.4.
Updating all the compact sets takegk H log W) time. Updating
all the A, and doing the necessary merges take &l log W),
hence the time is bounded ]

t1 tz t3 t4 t5 ta t7 ta t1 tZ t3 t4 t5 tﬁ t7 t8 19

pculelolelolclomgiclulelolololelelo)

synopsis synopsis
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5. 8] 16,91 @/
. 8] 5, 9]
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Figure 2: Maintaining the SCSQ.
4.4 SCSQ with Buffering

SCSQ makes a®(H)-factor improvement over the previous
synopses in terms of processing time, but there is still rdom
improvement. With our final synopsiSCSQ-Bufferwe make an-
other significant improvement by augmenting SCSQ with adstiff
ing technique, reducing the processing time to minimum.

The basic intuition here is that since onfy(.Sw ) is useful for
the query, we update only this compact set every time the avind
slides. For the rest of the compact sets, we update them¢hdmt
More precisely, we keep a buffé of sizek H for the latest tuples
(We assumdéV > kH; otherwise we just switch to BS.) When
the buffer is full, we empty it and make necessary changebeo t
synopsis. The detailed algorithm is shown in Algorithm 2.

Algorithm 2 BatchUpdate

1: let B be a buffer with sizé H;

2: for (each arriving tuple)

3: insertt into B;

4: if (Bisfull)

5 find the smallest such thatB; admits a compact set;
6: starting fromi, build SCSQ onB;
7.

8

9

update the existing SCSQ;
B =10
if (C(Sw) is affected)
10: updateC'(Sw);
11:  remove expired compact sets in SCSQ;

First, we need to build new compacts sets and the relevgat
for the tuples inB. Let B; be the set of latest tuples inB. To
do so, we first do a binary search to find the smaliestich that
B, admits a compact set (line 5). Since checking eBghakes
O(kH) time, the binary search také¥(kH log(kH)) time. Then
we build the first compact set. Next we scan the remaining tu-
ples from new to old, putting intd; those tuples ranking higher
than the lowest ranked one @(B;). When|A;| = H we stop,
and restart the same process by building another compacBget
Lemma 4.4 we will buildO(log(kH)) new compact sets faB,
spendingO(k H log(kH)) time in total (line 6).

Secondly, we update all the existing compact &(§,,) and
the A,, with all the tuples inB (line 7). Since there ar®(log W)
compact sets and updating each one taRégH ) time, the total
costisO(kH log W). Updating all the\,, and making all the nec-
essary merges tal®@(H log W) time. Therefore, the total cost for
emptying a buffer of siz&H is O(kH log(kH) + kH logW) =
O(kH log W). So the amortized cost per tuple is oiilog ).

Finally, for each incoming tuple, we always updaiéSw ) if
necessary (line 9-10). Similar to the case with B3Sw ) is af-
fected with probabilityO (H /W), so the cost of maintaining (Sw )

2\We change the size of the buffer whenev&ichanges by a factor
of 2. See also footnote 1.



Space Processing time
BS O(W + kH) O(kH? /W +1log W)
CsQ O(H?log W) O(kH?)
CCsQ O(H(k +logW)) O(kH?)
SCSQ O(H (k + logW)) O(kH log W)
SCSQ-Buffer| O(H(k +logW)) | O(kH? /W + log W)

Table 2: Asymptotic space and processing time bounds analigs

isO(kH?/W).

Theorem 4.4.SCSQ-Buffer require® (H (k + log W)) space and
has an amortized processing time®@tkH? /W + log W).

We summarize the space and time complexities of all five syn-
opses we have presented so far in Table 2. Bearing in mind that
k < H <« W, we can see that SCSQ-Buffer has both the best

space bound and the best processing time.

5. SUPPORTING OTHER TOP-kx DEFINI-
TIONS

As we have seen, our synopses are quite general in the sese th

any other topk query definition can be plugged into the framework
if a compact set can be defined such that Theorem 3.1 (suffigien
and Theorem 3.2 (self-maintenance with respect to insestiboth
hold. This section briefly shows how to support the otherehre
top-k definitions on uncertain data proposed in the literatureuin o
framework. In fact, all the existing solutions read the agpin the
rank order, and stop as soon as the correctness of the reselts
guaranteed. Such an approach naturally yields a compashseh

is also sufficient. So we only need to prove self-maintailitgbi

PT-k queries. Let the arrayr be defined as before.

Definition 5.1([20]) The compact seC (D) for the PT% query
with a thresholdr on an uncertain data sét is the smallest subset
of D that satisfies the following conditions. (¥}’ € C(D) and
t" € D-C(D), t' <5 t". )7 > Y, c,<) Td,1—1, Wherety is
the lowest ranked tuple i@'(D). o

Theorem 5.1. The compact set defined for RTgueries is self-
maintainable with respect to insertions.

PROOF Lett,c.w be the new tuple to be insertedfd If ¢y >
ta, ra,1—1 remains unchanged far < I < k, soC(D) stays un-
changed. Otherwise if,c., <y tq, then

k
/ p—
E Tdi—1 =
=1

k

Z(p(tnew)rd,le + (1 — p(tnew))ra,i—1)

=1

k—1 k
= Zp(tnew)m,zﬂ + Z(l — p(tnew))rd,i—1
1=0 =1

k k
= Zrd,l—l — p(tnew)rar—1 < Zrd,l—l < T.
=1 =1
So, any tuple not it (D) U {tnew } cannot be an answer.]

U-kRanks Queries.Let the arrayr be defined as before.

Definition 5.2([33]) Thecompact se€' (D) for the U4Ranks query
on an uncertain data sét is the smallest subset @ that satisfies
the following conditions. (1)t € C(D) andt” € D — C(D),
t" <5 t". (2) Lettq be the lowest ranked tuple @i(D), then

Vi1 > _ i=1,.... k.
11“£§S><dp(tz)n Lj=1 2 MAX Td-1, forj=1,....k (8)

As defined, condition (8) is unwieldy to prove self-maintgiiity.
So we first convert it to an equivalent, but much simpler ctodi
Specifically, we replace (8) with the following:

9)

Compared with (8), (9) is much easier to check because it only
requires finding one tuple, for rank &, not for all the ranks. But
as we show below, (9) also implies (8), hence equivalent (&th

p(ta)ra—1,k—1 > max rq;—1, forsomea < d.
1<I<k

Lemma 5.1. For any, if p(ti)’/‘ikafl > maxi<i<k d—1,0—1,
then for anyj, 1 < j < k, we have

(10

ti)ri—1,—1 > Max Tq—1,1—1-
p(ti)ri-1,; =13 )

PROOF Letarg maxi<i<x ra—1,1—1 = m. According to Lemma
3.3,74—1,1—1 monotonically increases whén< m and monoton-
ically decreases wheh> m. By Lemma 3.2, wherd > m, we
have

Td—1,1—1

Tio1,-1 > STio10 > T

Td—1,1
Soforallm < j <k,

ti)ri—1,j—1 > p(ti)ri—1 k—1 > Max Tg—1j—1 = MaX Tg—1,1—1-
P()rio1s-1 2 PRI kor 2 max raoyi = max v,

Next consider the case < j < m. Note that in this case the
RHS of (10) isrq—1,;—1. We will prove (10) by induction foy =
m,...,1. The base cas¢ = m has already been proved above.
Now suppose (10) holds fgr, i.e.,p(t:)ri—1,j—1 > ra—1,;—1, and
we considerj — 1. By Lemma 3.2,

Tio1,j—1
pti)rim1,j—2 > p(t;) —L—

Td—1,j-2 2 Td—1,j—2-
Td—1,j—1

So, (10) holds foralj, 1 < j < k. O

Theorem 5.2.The compact set defined for kRanks query is self-
maintainable with respect to insertions.

PROOF We consider the following three cases.

Case 1 thew =5 tq. Inthis caserq—1,k—1 andrg,;—1 remain
unchanged, s@’(D) stays unchanged.

Case 2tq >f tnew > ta. Inthis caserq,;—; changes to

= p(t'rlew)rd,lfQ + (1 - p(tnew))rd,lfl
< max{rqi—2,r4,i-1} < max rq_1,
1<I<k

Td,i—1

while r,—1,;—1 is unchanged. So (9) still holds @ D) U {¢new }-
Case 3 to >f tnew. BOthre_1;-1 andrq_1 ;1 change to
T 1,1 andrg_; ;. We compute

A = te )T 1 k1 — MAaxX Ty
p(a)a 1,k—1 1§l§kd,ll

= p(ta)P(tnew)ra-1,k—2 + (1 — p(tnew))Ta—1,k—1)

- félﬁgxk{p(t'rLew)Td,lfQ + (1 — p(tnew))Td,1—1}

> pta)(P(tnew)ra—1,k—2 + (1 = p(tnew))Ta—1,-1)
—(p(tnew) | max rai-1+(1—pltnew)) max rai-1)
= Pltnew)P(ta)ra—tn—2— max rai)
(1 = pltnew)) (p(ta)ra—1,5-1 — max 14,:-1))
> 0. (byLemmabs.1)

So (9) still holds orC' (D) U {tnew}. O



U-Topk queries. Suppose the tuples i arety, to, . .. in the de-
creasing rank order. Considekavector? = (tm,,...,tm, ). Let
Pr(T') be the probability of" being the topk tuples in a random
possible world. We have

k

[rtn)

i=1

Pr(T)

[T a-»e)

i<my,t; T

Recall that a U-Top query returns the vectd with maximum

Pr(T). Let D; = {t1,...,t¢;}, and letD? be the subset oD;
containing thek tuples with maximum probabilities i;. Define
pi as
pi=[] pt5) J] —pt)). (11)
t;eD? j<d,t;¢D?

Definition 5.3.([33]) Thecompact se€' (D) for the U-Topk query
on an uncertain data sét is C'(D) = D, whered is the smallest
such that

12

max p;
kgigdpz =

Lemma 5.2. C(D) contains at mosk tuples with probability
greater than.

ProOF If C(D) contains more thak tuples with probability
greater than;-, there existsl’ < d, and exactlyk tuples fromD
have probabilities are greater th%n We havemaxj<;<a’ pi >
par = I i<;<q max{p(ti), 1 — p(t:)}. This contradicts the fact
thatd is the smallest such that (12) holds]

Theorem 5.3. The compact set defined for ARanks queries is
self-maintainable with respect to insertions.

PrROOF We consider the following two cases.

Case 1 tnew >y tq. In this case, it is easy to see th@{D)
stays unchanged.

Case 2ty = f tnew. LetD' = C(D)U{tnew }, also represented
asD' = {t},--- ,ty,,}, ordered by rank. Supposé, = tnew,
thenforl < i < m,t; =t;;form <i <d, t;;; =t;. Letp;
denote the:'" largest probability in{t, - - - , ¢}, p the probability
of tuplet,ew, p; andp; the value of (11) for the séd’ andC(D)
respectively. We have

Pis i<m
pi-1(1=p), ©2>m,p < Pi-1;

g = pi-1(l=pi-1)s= 2 pia(1—p), i > m, 5 > P> pi-1;
pi-1P 5= > picap, i>m,p> 5> P
pim1p =t i>m,p>pior > 5

We claim that

d+1
d+1 ’ ’
max p; > 1:[1 max{p(t;),1 — p(t;)}. 13)
Indeed,
1= p) [T, max{p(t:), 1 = p(t:)}, B < 3;
RHS of (13)= ( i=1 2
6= { S ey BT

Whenp(tnew) = p > pi—1 > 3, (13) follows from Lemma 5.2.
Otherwise, it follows from the integration of above two etjoas.
S0,C(D’) C C(D) U {tnew}. O

120
100
80
60
40+

204

The size of a compact set

0

20 30 40 50

Parameter k

0 10

Figure 3: Size of the compact set.

10M4

—o—BS

2

m i —=—BS n
3 —o—CsQ < e—CsQ
& —s—ccsa & 4y —ccsa
S 100k4 —v—SCsSQ c —v—8CSQ
.% —+— SCSQBUffel .% —— SCSQBuffer
g g 100k §
- / 2
Q Q
o o
——————
g // gty m—v——
& ks , , — & —_——
5 10 15 20 10000 100000
Parameter k Window size

(a) Varyingk (W = 100, 000) (b) varyingW (k=20)
Figure 4: Space consumption on synthetic dataset

6. EXPERIMENTAL REPORT

In this section, we present an experimental study with bgth s
thetic and real data comparing the five algorithms discuseddr,
namely, BS, CSQ, CCSQ, SCSQ, and SCSQ-Buffer. All the algo-
rithms are implemented in C and the experiments are perfiione
a Linux server with Pentium 4 CPU (2.4GHz) and 1G memory.

Results on synthetic dataWe created a synthetic dataset contain-
ing 1,000,000 tuples. The rank of each tuplis randomly gener-
ated from 1 to 1,000,000 without replacement and the prdibabi
p(t) is uniformly distributed in(0, 1).

Figure 3 shows the number of tuples in the compact set for the
Pk-topk query for this dataset, dsincreases. We can see that it is
quite small and basically linear i This justifies our assumption
that H is usually much smaller than the size of the dataset. Note
that the previous studies [33, 20] also observed similaabieins
on the size of the compact set.

Next, we feed the dataset in a streaming fashion to each of the
synopses and measure their space consumption and prargssn
Figure 4 shows the space consumption of the synopses wigh var
ing k and varying window sizé¥, respectively. For simplicity,
when calculating the space consumption we only counteduthe t
ples and the array, assuming that each tuple takes 6 bytes and
each array entry takes 4 bytes. Keep in mind that, in reali-appl
cations, the tuples could be much larger as it may contairtimul
ple attributes including long fields like texts. So the sifmsthe
synopses shown here are only for comparison purposes; thal ac
sizes will be much larger and application-dependent. Thpex
imental results agree with our theoretical bounds in Table®
well: BS is the largest, and its size is dominated by the windo
sizeW, irrespective tds. CSQ reduces the size considerably com-
pared with BS, except for very small window sizes. All theeath
synopses are basically comparable in terms of size, all afiwdre
significantly smaller than CSQ and BS. In general, we obsarve
space reduction of 2 to 3 orders of magnitude from BS to CCSQ
and SCSQ/SCSQ-Buffer on large window sizes.
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Figure 5 shows the per-tuple processing cost of the five meth-_

ods. We can observe that CSQ and CCSQ runs slowest, duerto theg 0014

cubic dependency oh (since H is roughly linear ink). SCSQ
is better, since the dependency ks quadratic. BS and SCSQ-
Buffer runs the fastest. Interestingly, although they hineesame
asymptotic bound, we observe that SCSQ-Buffer actuallg auen
faster than BS. This is a bit counter-intuitive since what®8s for
each tuple is very simple. It maintains all the tuples in thedow

in sorted order (using two balanced binary tree), and sirmagrts
and deletes tuples in this tree as they arrive and expire.ddi+ a
tion, it rebuildsC'(Sw ) if it becomes invalid. The latter step is also
done in SCSQ-Buffer. The explanation is that although naénirig

a balanced binary tree is computationally easy, it is quiéenory
intensive. When we perform an insertion or a deletion, mages
in the tree, possibly in different memory locations, aredread

Buffer is much more cache friendly, due to its small memointpr
and the way it performs the batched updates. Another irteges
observation is that the per-tuple processing cost eithraanes the

is that an incoming tuple has a smaller probability to affeetex-
isting compact sets when the window size is larger, thusgavie

computation cost. Similar phenomenon can also be observed i 7

Figure 7(b), 8(d), 9(d), and 10(d).

Results on real data.We used the International Ice Patrol (IIP) Ice-
berg Sightings Databato examine the efficiency of our synopses
in real applications. The (lIP) Iceberg Sightings Databasects
information on iceberg activity in North Atlantic to monitice-

icebergs, plotting and predicting iceberg drift, and bicasting all
known icebergs to prevent icebergs threatening. In thebdats
each sighting record contains the date, location, shape, sum-
ber of days drifted, etc. It is crucial to find the icebergdtarg
for long periods, so use the number of days drifted as theimgnk
attribute. Each sighting record in the database containsnéi-c
dence level attribute according to the source of sightingluid-
ing R/V (radar and visual), VIS (visual only), RAD(radar ghl
SAT-LOW(low earth orbit satellite), SAT-MED (medium earbin-
bit satellite), SAT-HIGH (high earth orbit satellite), aB$T (esti-
mated, used before 2005). We then converted these six cooéide
levels to probabilities 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, andregpec-
tively. We gathered all of records from 1998 to 2007 and resul
in 44440 records. Based on it, we created a 1,000,000-restziad
stream by repeatedly selecting records randomly. The erper

observe very similar results as those on the synthetic datah
demonstrates the robustness of our synopses.

3http://nsidc.org/data/g00807.html
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Other top-k queries. Finally, we also implemented the compact
written, causing a lot of cache misses. On the other handBCS  sets for the other three tdpdefinitions: PTk, U-kRanks, and U-
topk. We plugged them into our synopses and conducted exper-
iments on the real dataset. The results are shown in Figuge 8,
and 10. Again, both the space consumption and processirgy tim

same or even decreases as the window size increases. Tha reas have very similar behaviors as those on thet8pk query, which
testifies the generality of our framework.

RELATED WORK

Top-k Queries. Top-k queries on a traditional certain dataset have
been well studied in the literature. Numerous query prangss
algorithms have been proposed[16, 26]. The threshold ighgor
(TA) [26] is one of the best known algorithms. It assumes dzath
berg danger near the Grand Banks of Newfoundland by sighting tuple has several attributes, and the ranking function isaatone
function on these attributes. TA first sorts the tuples byheate
tribute and then scans the sorted lists in parallel. Each tmew
tuple appears, TA looks it up in all lists to calculate itskam ad-
dition, TA maintains a “stopping value”, which acts as a sad

to prune the tuples in the rest of the lists if they cannot Haetter

scores than the threshold.

There are many recent development and extensions th tgries
under different scenarios. Babcock and Olston [4] propasedl-
gorithm to monitor the tog: most frequent items in a distributed
environment. Das et al. [14] use views to answer kageries effi-
ciently. Xin et al. [31] remove redundancy in téppatterns. Xin et
al. [32] also apply multidimensional analysis in tégueries. Hua
et al. [19] define the rank of a tuple by the typicality and aesthe
top-k typicality queries. A very relevant work to ours is the paper
by Mouratidis et al. [24], which presents a method to cordimly

tal results on this real dataset are shown in Figure 6 and 7. We Monitor top# queries over sliding windows. However, same as all
of the other works listed above, it only considers certaitabases.

Uncertain data management and topk queries. Uncertain data
management [27] has received increasing attention witkether-
gence of practical applications in domains like sensor ogksy
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Figure 10: U-topk query on real dataset

data cleaning, and location tracking. The TRIO system [B9] i
troduced different working models to capture data uncetyaat
different levels, with an elegant perspective of relatimgertainty
with lineage as an emphasis on uncertain data modeling. A goo
survey on recent uncertain data algorithms is [2].

Cheng et al. [8] provided a general classification of prolistin
queries and evaluation algorithms over uncertain data dets
ferent from query answering in traditional data sets, a abilis-
tic quality estimate was proposed to evaluate the qualitesilts
in probabilistic query answering. Dalvi and Suciu [12] pospd
an efficient algorithm to evaluate arbitrary SQL queries oobp-
bilistic databases and rank the results by their probabilitater,
they showed in [13] that the complexity of evaluating corcfive
queries on a probabilistic database is either PTIME or #Rpiete.

Re et al. [28] gave a solution to answer SQL query over uncer-
tain databases. The idea for their method is to run in passieeral
Monte-Carlo simulations, one for each candidate answet,agn
proximate each probability only to the extent needed to agmp
the correct topk answers. However, they are only concerned with
the probability of a tuple appearing in the query results] ao
ranking function is involved.
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There are three definitions proposed so far for uncertain top
k queries based on a ranking function. Soliman et al. [30] first
defined two types of such tap-queries, named U-Tdpand U-
kRanks, and proposed algorithms for each of them. Their algo-
rithms were subsequently improved by Yi et al. [33]. Hua ef20,
21] proposed another tap-definition, namely PT, and proposed
efficient solutions. The RTopk query that we mainly focus in this
paper is actually a slight variant of FT- But we show how all of
the existing three definitions can be plugged into our fraprew
All the existing works only study the problem of how to answaer
“one-shot” top-k query on a static uncertain data set, with ex-
ception of [7], which presents a fully dynamic structure tipgort
arbitrary insertions and deletions. However, the structure of [7]
has size linear in the data set since the goal there is to alow
tuple to be deleted. In the sliding window model, the “firstfirst
out” property has allowed us to reduce the space compleigty s
nificantly. In addition, [7] is only concerned with U-Topk eies,
and the structure is quite complicated and theoretical farea

Uncertain data streams. As mentioned in Section 1, there has
been a lot of effort in extending the query processing temines on



static uncertain data to uncertain data streams [1, 9, 1®2,123,
34]. Though there are papers on computing statistical agges
and clustering, there is still no work on tdpgueries over uncertain
streams. Nevertheless, as we point out in Section 3, it isatlgt

not difficult to extend the existing top-algorithms to the case of
unbounded streams. But in the more meaningful sliding windo
model, the problem becomes much more difficult. To the best of
our knowledge, our paper is the first piece of work on uncertai
streaming algorithms in the sliding window model.

8. CONCLUSIONS

Top-k queries are arguably one of the most important types of
queries in databases. This paper extends the problem okangw
uncertain topk queries on static datasets to the case of uncertain
data streams with sliding windows. We designed both spaué- a
time-efficient synopses to continuously monitor the topesults,
and showed that all the existing tdpelefinitions can be plugged
into our framework. In the present paper, we adopted the lsimp
uncertain data model where each tuple appears with a certain
ability independent of other tuples. In future, we are plagrto
find solutions to cope with more complex uncertain models.

This paper only considers how to cope with sliding-windoy-to
k queries exactly accordingly to the definitions. Anotheufat
direction is study the approximate versions of them [21]jchh
possibly allows for more space- and time-efficient solugion
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