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Abstract. Approximation is a very effective paradigm to speed up
query processing in large databases. One popular approximation mech-
anism is data size reduction. There are three reduction techniques: sam-
pling, histograms, and wavelets. Histogram techniques are supported by
many commercial database systems, and have been shown very effective
for approximately processing aggregation queries. In this paper, we will
investigate the optimal models for building histograms based on linear
spline techniques. We will firstly propose several novel models. Secondly,
we will present efficient algorithms to achieve these proposed optimal
models. Our experiment results showed that our new techniques can
greatly improve the approximation accuracy comparing to the existing
techniques.

1 Introduction

Traditional query processing has focused on generating exact answers in a way
that seeks to minimize response time and maximize throughput. However, in
many applications it may be too expensive for the DBMS to produce exact
answers. For example, when user issues a complex query to a data warehousing,
generating an exact answer may take hours or even days due to the costs of
computation and disk I/O required. Sometimes a network or disk storage failure
may cause a part of data not accessible; this makes exact answers impossible.
Another example is that in a decision support system, an early response by
approximate answers is especially helpful because the user can quickly determine
a direction to drill down the data. Clearly, approximation is a good alternative
in those applications. The quality of an approximate processing is measured by
two conflicting parameters: efficiency and accuracy. A “good” approximate query
processing usually means a good trade-off between efficiency and accuracy.

Database queries have two forms - aggregation and non-aggregation. An ag-
gregation query returns a numeric value; for instance, COUNT, SUM, AVG,
etc. A non-aggregation query returns a set of tuples from a database tables;
for example, JOIN. Approximate processing of aggregation queries has recently
attracted a great deal of attention. Most research results are based on a data
size reduction paradigm. Three techniques [4] have been developed, such as sam-
pling, histogram and wavelet. Sampling [1,18,5] is a popular data size reduction
technique which takes a small portion of data as representative. To reduce ap-
proximation errors caused by applications of sampling techniques to data with
big distribution skew, wavelet techniques were firstly applied by the authors
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in [14] to approximate query processing. The basic idea is to compress data by
“important” wavelet coefficients [6]. Another popular technique is based on “his-
tograms”, which were originally used in commercial database systems to capture
attribute value distribution statistics for query optimizers.

Among these three techniques, histogram is the most popular data reduction
technique for approximately processing aggregation queries due to the follow-
ing two reasons. Nowadays many commercial DBMS such as DB2, Informix,
Ingres, Microsoft SQL Server, Sybase, etc. have been already using histogram
techniques. Therefore, any new histogram techniques may be immediately ac-
commodated by these database management systems. Secondly, the histogram
technique is naturally suited to estimating aggregation queries. The basic idea of
histogram technique is to partition original data into certain number of “inter-
vals” (“buckets”). The key issues in histogram techniques are: how to partition
the original data, what to store in each bucket, and how to estimate the result
of an aggregation query for a given histogram. Many histogram techniques have
been developed in [7,8,9,10,13,17].

To minimize approximation errors in a histogram, “linear-spline” [12] tech-
niques have been proposed in combining with the least-square [19] method. It
has been shown [12] that this technique out-performed those “conventional” his-
togram techniques [7,8,9,13,17]. To compliment the work in [12], in this paper
we will propose a novel optimization model for generating linear-spline based
histograms. This is the first contribution of the paper. The second contribution
of the paper is that we use linear-splines to interpolate a “summation” distribu-
tion. Thirdly, we present a dynamic programming based paradigm for generating
optimal histograms according to the proposed models in this paper, respectively.
Our experiments reported that the new proposed optimization models in the pa-
per out-perform the existing techniques by 2 to 20 times regarding the accuracy,
subject to types of aggregation, data distributions, and data reduction degrees.

The rest of the paper is organized as follows. Section 2 presents the relevant
definitions, an overview on the existing histogram techniques, and a motivation
of our research in the paper. Section 3 presents details of our new optimal models
for generating linear-spline based histograms, as well as their variations. Section
4 presents an efficient paradigm based on a dynamic programming technique to
compute optimal histograms. Section 5 rep/setfigure orts our experiment results.
This is followed by a conclusion.

2 Preliminary

Given a relation R and an attribute X of R, the domain D of X is the set of all
possible values of X, and a finite set V (⊆D) denotes the distinct values of X in
an instance of R. Let V be ordered; that is V = {vi : 1 ≤ i ≤ d} where vi < vj

if i < j. An instance of R restricted to T of X is denoted by T , and can be
represented as follows. T = {(v1, f1), (v2, f2), . . . , (vd, fd)}. Here, each distinct vi

is called a value of T ; and fi represents the occurrence of vi in T , which is called
frequency of vi. Note that in this paper, we call T data distribution or data set;
that is, in this paper data set and data distribution will be used as synonymy.
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A histogram on data set T is constructed by:

– partitioning T into β (≥1) disjoint called buckets (or intervals) - {Bi : 1 ≤
i ≤ β}, such that each value in Bi is smaller than that in Bj if i < j, then

– approximately representing the frequencies and values in each bucket.

The width of a bucket is vj − vi where vj and vi are respectively the maximal
value and minimum value in the bucket.

2.1 Existing Histogram Techniques

In a histogram, a given data distribution in each bucket needs to be approxi-
mated in some fashion to minimize the information to be stored. In histogram
techniques, the distribution of values in a bucket usually takes the uniform spread
assumption; that is, the values are assumed to locate at equal distance from each
other [17]. Consequently, we only need to store the minimum and maximum val-
ues in a bucket together with the number of values in this bucket; the other
values can be approximately derived according to this assumption.

In the existing histogram techniques, the central focus is to closely match
a given frequency distribution. In a conventional histogram model, a frequency
distribution {(vi, fi), ..., (vj , fj)} in a bucket has been approximately represented
by a constant - the average frequency fi,j where fi,j = fi+fi+1+...+fj

j−i+1 . The exist-
ing techniques for generating conventional histograms may be summarized below
according to different partition models:

– Equi-width [13]: bucket widths equal each other.
– Equi-sum [15,13]: the sum of the frequencies in each bucket is the same.
– Maxdiff [17]: the data distribution is partitioned such that the differences of

the frequencies between adjacent boundaries are maximized.
– V-optimal [8,7,9]: Partition data such that

∑β
j=1

∑nj

k=1(fj − fj,k)2 is min-
imized, where β is the number of buckets, nj is the number of entries in
the jth bucket, fj is the average frequency of jth bucket, and fj,k is the kth
frequency of jth bucket.

Experiment results suggest that in most applications, Maxdiff and V-optimal
out-perform Equi-width and Equi-sum.

To match closely a given frequency distribution, the authors in [12] proposed
to use a line with an arbitrary slope to replace “horizontal” line in the conven-
tional histogram model. For example, with respect to the data distribution in
Figure 1, the line in Figure 1(b) is much closer to the original data distribution
than that in Figure 1(a) where the horizontal line corresponds to the average
frequency in a conventional histogram. Further, it is well-known that an applica-
tion of the least-square technique [19] will minimize the errors in matching by a
linear model. These motivated the development of Linear-Spline histogram with
Least Square method [12] (LSLS):

– LSLS : In this model, the frequencies in each bucket are approximated by a
linear function lj(v) = aj ∗v+bj where j represents the jth bucket. The goal
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is to find a histogram with β buckets, such that
∑β

j=1
∑nj

k=1(lj(vj,k)− fj,k)2
is minimized where nj is the number of entries in the jth bucket and vj,k,
fj,k are the kth value and frequency of jth bucket. Note that in this model,
for each bucket Bj , the least square method is used to fix the variables aj

and bj .

Bucket Boundary

Frequency approximation line

Original value−frequency points in a bucket
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(a) Uniform Frequency Assumption (b) Linear Function Assumption

Fig. 1. Uniform Frequency VS. Linear Function

2.2 Least-Square: Best Alternative?

Clearly, the LSLS model can simulate an arbitrary data distribution more closely
than a conventional data model does; this is because that a horizontal line is a
special member in the family of linear splines. Further, LSLS usually provides
the closest matching within linear models. However, it should be noted that a
given data distribution does not always follow the uniform spread distribution
for its values’ distribution. Consequently, LSLS may not generally bring the best
approximate solutions; we will show this in our experiments. In fact, the LSLS
model cannot generally guarantee the following two properties:
P1: the approximation on total frequencies in a bucket of a histogram is the

same as that in the original data set.
P2: the approximation on summation of all the values from the data set re-

stricted to a bucket are the same as that (i.e.,
∑

i vi ∗fi) in the original data
set restricted to the bucket.

Note that in contrast, any conventional model has the property P1. For example,
suppose that a bucket holds the following data distribution:

{(10, 25), (20, 45), (50, 105), (60, 125), (70, 145)}
Figure 2(a) and Figure 2(b) illustrate the information stored in a conventional
model and in LSLS, respectively.

The table below summarises the results by querying the original data, the
conventional histogram, and the LSLS histogram. This motivates our research.



358 Q. Zhang and X. Lin

Lowest

Value

Number of

Values

Highest

Value

10 70 5 89

Frequency

Average

Conventional 

Histogram

Lowest

Value

Number of

Values

Highest

Value

Histogram

LSLS

Slope

a
Interception

b

10 70 5 2 5

(a) Conventional model (b) LSLS model

Fig. 2. Bucket Representations

Count(X) with 10 ≤ X ≤ 70
Exact answer 445

conventional histogram 445
LSLS histogram 425

Sum(X) with 10 ≤ X ≤ 70
Exact answer 24050

conventional histogram 17800
LSLS histogram 21500

3 New Models of Linear Spline Histogram

Suppose that a data distribution T = {(v1, f1), (v2, f2), . . . , (vd, fd)} is given,
which is partitioned into β buckets {Bk : 1 ≤ k ≤ β}. In each bucket Bk,
a linear spline, lk(x) = ak ∗ x + bk, is used to approximate the corresponding
data distribution. The total variances of the approximation by linear splines are:∑β

k=1
∑

vi∈Bk
(lk(vi) − fi)2.

Below, we show two new ways to determine ak and bk corresponding to each
bucket Bk.

3.1 New Linear-Spline Models

In this subsection, we present the following two new models.

LSCG: Linear Spline histogram with Count Guaranteed. Suppose that
a bucket Bk is given. A linear function l′k(x) = a′

k ∗x+b′
k is used to approximate

the data distribution {(vik
, fik

), (vik+1, fik+1), ..., (vik+jk
, fik+jk

)} in Bk. In this
model, we will first enforce that the total frequency approximately calculated
from Bk in the histogram is the same as the original one. Then, the least-square
method will be used. That is, we first enforce the following equation:

jk∑
m=0

(a′
k ∗ v′

ik+m + b′
k) =

jk∑
m=0

fik+m (1)

Here, v′
ik+m represents the (m + 1)th smallest distinct value in Bk with respect

to a histogram. According to the uniform spread assumption, v′
ik+m should be

calculated in (2). Note that this v′
ik+m will be used in approximate query pro-

cessing against the histogram instead of vik+m (if m �= 0 or m �= jk) in the
original distribution.

v′
ik+m = vik

+ m ∗ vik+jk
− vik

jk
(2)
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From (1) and (2), we can derive:

b′
k = fk − vik

+ vik+jk

2
∗ a′

k (3)

Here, fk is the average frequency in Bk. Next we use the least-square method
to determine a′

k. That is:

d(
∑jk

m=0(a′
k ∗ vik+m + fk − vik

+vjk

2 ∗ a′
k − fik+m)2)

d(a′
k)

= 0 (4)

Note that in (4), we use (3) to replace b′
k first.

Thus we derive:

a′
k =

12 ∗ ∑jk

m=0(fik+m ∗ (m + 1)) − 6 ∗ (jk + 2) ∗ ∑jk

m=0 fik+m

(vik+jk
− vik

) ∗ (jk + 1)(jk + 2)
(5)

Note that in (5), the denominator equals zero if and only if vik
= vik+jk

(i.e.,
Bk contains only one distinct value vik

). Consequently, we assign that a′
k = 0

and b′
k = fik

if Bk contains only one distinct value.

LSCSG: Linear Spline Histogram with Count and Sum Guaran-
teed. As with LSCG, a linear function l′′k(x) = a′′

k ∗ x + b′′
k is used to approxi-

mate the data distribution in bucket Bk. However, this time a′′
k and b′′

k will be
chosen to make the total frequency and total summation approximately calcu-
lated over Bk in the histogram are the same as those from the original data set,
respectively. This requires that a′′

k and b′′
k satisfy the following linear equations:

{∑jk

m=0(a′′
k ∗ v′

ik+m + b′′
k) =

∑jk

m=0 fik+m (a)∑jk

m=0(v′
ik+m ∗ (a′′

k ∗ v′
ik+m + b′′

k)) =
∑jk

m=0(fik+m ∗ vik+m) (b)
(6)

Similarly, here:

v′
ik+m = vik

+ m ∗ vik+jk
− vik

jk

Solving equation (a) and (b) of (6), we get a′′
k and b′′

k as follows.




a′′
k =

∑jk

m=0
(fik+m∗vik+m)∗(jk+1)−

∑j

m=0
fik+m∗

∑jk

m=0
v′

ik+m

(m+1)∗
∑jk

m=0
(v′

ik+m
)2−

∑jk

m=0
v′

ik+m
∗
∑jk

m=0
v′

ik+m

(a)

b′′
k =

∑jk

m=0
fik+m∗

∑jk

m=0
(v′

ik+m)2−
∑jk

m=0
(fik+m∗vik+m)∗

∑jk

m=0
v′

ik+m

(jk+1)∗
∑jk

m=0
(v′

ik+m
)2−

∑jk

m=0
v′

ik+m
∗
∑jk

m=0
v′

ik+m

(b)
(7)

It can be immediately verified that the denominators in (7) equals zero if and
only if vik

= vik+jk
(i.e., Bk contains only one distinct value). Consequently, we

assign that a′′
k = 0 and b′′

k = fik
if Bk contains only one distinct value.

It may be worth to point out that if a given value distribution follows the uni-
form spread assumption, then both LSCSG and LSCG are equivalent to LSLS.
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3.2 Matching Summation

Suppose that T = {(v1, f1), ..., (vd, fd)} is a data distribution. Clearly, the
COUNT query for vi ≤ X ≤ vj equals:

∑
vi≤vm≤vj

fm.

The SUM query for vi ≤ X ≤ vj equals:

∑
vi≤vm≤vj

(vm ∗ fm).

Note that all the existing histogram techniques, including our LSCG and LSCSG,
approximately match the frequency distribution in each bucket. However, our
initial experiments showed that it is also a good idea to approximately match
a “summation” distribution - vm ∗ fm (1 ≤ m ≤ d). Next we present our new
models based on this idea.

LSSCG: Linear Spline histogram for Summation with Count Guaran-
teed. For a bucket Bk, let lk(x) = ak ∗ vt + bk. We aim to find a partition to
minimize (8):

β∑
k=1

∑
vi∈Bk

(lk(vi) ∗ vi − fi ∗ vi)2 (8)

It should be noted that ak and bk are determined in the same way in Bk as those
in LSCG.

LSSCSG: Linear Spline histogram for Summation with Count and
Sum Guaranteed. In this model, we aim to find a partition to minimize (9):

β∑
k=1

∑
vi∈Bk

(lk(vi) ∗ vi − fi ∗ vi)2 (9)

Here, lk(x) = ak ∗vt +bk is a linear function in Bk, and ak and bk are determined
in the same way as in LSCSG.

4 Building Histograms

Suppose that T = {(v1, f1), (v2, f2), ..., (vd, fd)} is a data distribution. In this
section, we will present an efficient paradigm to solve LSCG, LSCSG, LSSCG,
LSSCSG. The paradigm is based on a dynamic programming technique [2].
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4.1 A Dynamic Programming Paradigm

Note that the optimal goal functions P in LSCG, LSCSG, LSSCG, LSSCSG
may be represented by the following uniform form.

P =
β∑

k=1

∑
vi∈Bk

Vi (10)

Here, β represents the number of buckets, vi represents a value. Note that
the variance Vi in each model is as below.

Vi =
{

(lk(vi) − fi)2 if LSCG or LSCSG
(lk(vi) ∗ vi − fi ∗ vi)2 if LSSCG or LSSCSG

(11)

Our paradigm follows the framework in [2,10,11,12]. Let P ∗(X,Y ) represent
the optimal result of using Y buckets to partition the first X values of T . Let
P [a, b] denote the bucket containing the consecutive {(va, fa), ..., (vb, fb)} in T .
Then below is the crucial formula for our paradigm.

P ∗(d, β) = min
1≤j≤d−1

{P ∗(j, β − 1) + P [j + 1, d]}

Thus, in order to calculate P ∗(d, β), we must calculate P ∗(i, k) for 1 ≤ i ≤ d
and 1 ≤ k < β. After storing all these intermediate results, we can finally get
the optimal value by comparing different grouping plans. The time complexity
of this dynamic programming paradigm is O(β ∗d2) for a given data distribution
T .

4.2 Matching Area

As noted in [17], two data pairs with similar frequencies but large value difference
may be possibly grouped in one bucket according to the existing models. To
resolve this, another partition parameter - area - may be useful.

Given a data distribution T = {(v1, f1), (v2, f2), ..., (vd, fd)}. The spread si

of vi (for 1 ≤ i ≤ d) is defined as vi+1 − vi; we make sd = 1. The area ai of vi is
defined as fi ∗ si for 1 ≤ i ≤ d.

Clearly, the area parameter may be adopted by the models: LSLS, LSCG, and
LSCSG. We name the corresponding models “LSLS(area)”, “LSCG(area)”, and
“LSCSG(area)”, respectively, which aim to minimize the following goal function.

β∑
k=1

∑
vi∈Bk

s2i ∗ (lk(vi) − fi)2 (12)

Note that the difference among LSLS(area), LSCG(area), and LSCSG(area) is a
different choice of ak and bk for lk. In fact, ak and bk will be chosen in the same
way as those in LSLS, LSCG, LSCSG, respectively.

Similarly, we name LSSCG(area) and LSSCSG(area), respectively, for the
modifications of LSSCG and LSSCSG using the parameter area; that is, to min-
imize the following goal function in LSSCG(area) and LSSCSG(area), respec-
tively:
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β∑
k=1

∑
vi∈Bk

s2i ∗ (lk(vi) ∗ vi − fi ∗ vi)2 (13)

Again the difference between LSSCG(area) and LSSCSG(area) is a different
choice of ak and bk in lk; ak and bk will be calculated in the same way as those
in LSSCG and LSSCSG, respectively.

Note a similar idea was proposed in V-optimal [17]. The paper [17] proposed
to find a partition to minimize the following goal function.

β∑
k=1

∑
vi∈Bk

(f ∗ s − fi ∗ si)2 (14)

Here f ∗ s is the average fi ∗si in bucket Bk. In our experiment, we generate the
V-optimal and Maxdiff area-matching histograms based on the original idea in
[17]; that is, based on (14).

It can be immediately verified that our dynamic programming based
paradigm also works for finding the optimal solutions for (12) and (13).

5 Experiments

The data sets used in our experiments are synthesized zipf [20] data. In database
1, 10 tables have been generated, and each table has all together 10, 000 tuples
but with only 101 different values from the domain [0, 1000]. Tables in database 1
have a high frequency. Database 2 also contains 10 generated tables, and each ta-
ble contains 10, 000 tuples with 1001 different values from the domain [0, 10000].
The generation of each data set follows three steps below.

– Generating Frequencies: Different frequencies are generated according to zipf
law and the zipf parameter z = 1.0. This means a medium skew frequency
distribution.

– Generating Values: The spreads of values follow one distribution of zipf inc,
zipf dec, cusp min, cusp max and zipf ran [16]. The Zipf parameter z = 1.0.

– Generating Data Distribution: Frequencies are randomly assigned to different
values.

Note that the number of buckets to be used in a histogram reflects a data
reduction “degree”. If the number of buckets equals the number of distinct values,
then there is no data reduction, and consequently all histograms will produce
the same result - the exact result.

In our experiments, for tables in database 1 we use different bucket num-
bers 10, 15, 20, 25, 30, to produce corresponding histograms. For databases used
in database 2, we use bucket numbers – 10, 20, 30, 40, 50 to produce different
histograms.

In our experiments, we build eight histograms respectively according to our
eight new models:
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LSCG, LSCSG, LSSCG, LSSCSG, LSCG(area), LSCSG(area), LSSCG(area),
and LSSCSG(area).

For a comparison purpose, we also constructed the six histograms based on
the following existing models:

V-optimal, Maxdiff, LSLS, V-optimal(area), Maxdiff(area) and LSLS(area).

In contrast to conventional histograms, each bucket in a linear-spline based
histogram needs to store one more column information as depicted in Figure 2.2.
Note that in our experiment, we have enforced that every histogram occupies
the same storage space. To achieve this, the available bucket number for a linear-
spline histogram is reduced to 80% of that for a conventional histogram.

In our experiments, we targeted the 3 most popular aggregation operations,
COUNT, SUM, and AVG. Since AVG is derived from a division between SUM
and COUNT, we focused only on two types of range queries, COUNT and SUM.
For each data set and each type of range queries, 1000 queries are randomly
generated with the form:

{a ≤ X ≤ b | a < b}
Here a and b are randomly selected from the values’ domains.
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Fig. 3. Approximating aggregation query on Databases 1 and 2
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Let Si represent the actual result of query qi and S′
i represent the approx-

imately calculated result. The error metrics used to evaluate our histograms
are:

– relative error: erel
i = |Si−S′

i|
Si

– average relative error: erel
N =

∑N

i=1
erel

i

N , where N represents the number
of queries.

All the generated tables and histograms are stored in an Oracle DBMS and our
experiments are done on a Pentium III 700 MHz CPU, 256MB memory computer
with Linux 2.4.7.

Since the results do not vary significantly on different tables within a
database, we only show some typical results here; that is, one table per data
set.

Our first group of experiments are comparing the following ten histograms:

V-optimal, Maxdiff, LSLS, LSCG, LSCSG, V-optimal(area), Maxdiff(area),
LSLS(area), LSCG(area), LSCSG(area).

Figure 3 provides the experiment results for database 1 and 2, respectively.
From Figures 3(a) and 3(b), we can see that when original data distribution
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Fig. 4. Approximating on Database 1 and 2 (with/without summation matching)
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is “sharp” (i.e. database 1), our LSCSG(area) model out-performs the existing
techniques (even modified by using the area parameter) by 5 - 20 times regarding
accuracy subject to the number of buckets. Figures 3(c) and 3(d) suggest that
when original data distribution is “smooth” (i.e. database 2), our LSCSG(area)
model also out-performs the existing techniques by 2 - 15 times depending on the
number of buckets used. Clearly, our experiments suggested that LSCSG(area)
has the best performance.

Next, we examine if “summation-matching” may bring a further improve-
ment. Our experiment suggested that it may further improve the accuracy if
there are many repeated values; the experiment results are illustrated in Figure
4.

Note that due to the sapce limitation, a numerical illustration of our exper-
iment results have been omited in the final version; the interested readers may
refer our full paper for the details.

6 Conclusion

In this paper, we proposed several novel and effective optimal models for building
linear-spline based histograms. By the proposed new models, the accuracy of
approximating aggregation query has been greatly improved. Our experiments
showed that the new models outperform the existing techniques by 2 − 20 times
depending on the degrees of data reduction and types of queries.

Very recently, the authors in [3] proposed a very effective post processing
after a data distribution is partitioned. As a future study, we will investigate
whether our new partitioning models will support this post processing better
than the other existing models. We also plan to investigate the proposed new
models in the paper against streaming data, and to find a way to speed up the
algorithms for producing the optimal histograms.
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