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Abstract— Uncertain data are inherent in many important
applications. Recently, considerable research efforts have been
put into the field of managing uncertain data. In this paper,
we summarize existing techniques to query and model uncertain
data and systems that effectively manage uncertain data, mainly
from a probabilistic point of view.

I. INTRODUCTION

Managing uncertain data has been studied ever since the
eighties last century from the database society. With the
emergence of many recent important and novel applications in-
volving uncertain data, there has been a great deal of research
attention dedicated to this field. The applications include
data cleaning, data integration, information extraction, sensor
networks, economic decision making, market surveillance,
trend prediction, moving object management, etc. Uncertainty
is inherent in such applications due to various factors such as
data randomness and incompleteness, limitation of equipment,
and delay or loss in data transfer.

Note that in this paper, we do not distinguish between
imprecise and uncertain data and use the term uncertain for
the reason of simplicity. To be precise, imprecision means
information available is not specific enough, for instance, the
temperature outside is between 35 and 38 centigrade (interval);
it is 35 or 38 centigrade (disjunction); it is not 20 centigrade
(negative); or we simply do not know the outside temperature.
On the other hand, uncertainty indicates it is impossible to
determine wether information available is true or not. For
instance, the temperature may be 38 centigrade [34].

Managing uncertain data is not well supported by con-
ventional database systems. A number of technical issues in
traditional databases have been reinvestigated recently under
uncertain semantics, including modeling uncertainty, query
evaluation, indexing, query processing against relational and
spatial uncertain data. Many important results have been
obtained in system and theory. Figure 1 summaries the recent
breakthroughs in this field regarding three categories, model-
ing, querying and systems.

In addition to the two survey papers by Dalvi and Suciu [30]
and by Aggarwal and Yu [5] on querying and mining uncertain
databases, a tutorial on querying uncertain data is presented by
Pei et al in [58]. In this paper, we present a comprehensive,
concise survey that covers relational and multi-dimensional

spatial uncertain data management as well as existing database
systems that support uncertain data management.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce existing models to represent uncertainty.
Section III summarizes various query types defined under
uncertain semantics and corresponding techniques. Section IV
briefly overviews available systems that support uncertainty
management. We conclude the paper in Section V with a brief
discussion of future research work in the field.

II. MODELING UNCERTAINTY

The uncertainty of an object can be specified by three
models [73]: fuzzy model [34], evidence-oriented model [47],
[49] and probabilistic model [63]. In fuzzy models, fuzzy
entities, fuzzy attributes, fuzzy relationship, fuzzy aggrega-
tion, fuzzy constraints, etc are used to model uncertainty
and imprecision. In evidence-oriented models, the Dempster-
Shafer Theory of Evidence is applied to model uncertainty
and imprecision. Probabilistic models specify uncertainty with
probability values and are widely used. In this paper we mainly
discuss probabilistic models.

Most frequently used granularities to specify uncertainty are
group-based (or table-based), object-based (or record-based)
and attribute-based [73]. A group-based approach concerns
the “coverage” of the group such as how much percent of
objects in this group is present; an object-based approach
assigns appearance probability to each object in the group;
in the attribute level, an attribute of a tuple is associated with
probability distribution information describing a set of possible
values. Object-level uncertainty is more attractive for various
reasons such as it results in relations that are usually 1NF and
it is easier to store and operate on [67]. In this section, we
firstly introduce object-based uncertainty specification using
possible world semantics [1], [39], followed by advanced
models capturing uncertain characteristics in databases.

A. Object-based Uncertainty Model

Independent Model. Suppose in an uncertain data set D an
object (record) R has probability P(R) (P(R) > 0) to occur
and all objects are independent. A possible world W is a subset
of D and each object R € D with P(R) = 1 must be included
in W. Clearly, the occurrence probability of a possible world
is PW) = [1grew P(R) - [Iggw (1 — P(R)). Let W be the
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set of all possible worlds of D and N be the number of objects
with occurrence probability smaller than 1, then |W| = 2V.
The sum of the membership probabilities of all possible worlds
in W equals to 1; that is, > )y, P(W) = 1.

General Model. In a general case, records in a data set
may be correlated. A comprehensive study of possible world
semantics is conducted by Hua et al in [35], [71], [75]. A set
of records R, ..., R,, are exclusive if at most one of them
could appear in a possible world and > ,_,, P(R;) <1
where P(R;) is the occurrence probability of R;. A set
of exclusive records are also called a generation rule R.
Occurrence probability of a generation rule R is the sum
of probabilities of all the records involved in R; that is,
P(R) = >_per P(R). Note that a generation rule (virtually
regarded as an object) could contain only one record and
different generation rules are independent. Given a set of m
generation rules — Gp = {R4, ..., R, }, a possible world W
is defined as an element in [[ .o R where G’ is a subset of
Gp, G’ contains every generation rule R such that P(R) = 1.
Let |R| be the number of records in R. The number of all
possible worlds with respect to Gp is:

wi= I ® I R+ 1
REGp,P(R)=1  REGP,P(R)<1
Occurrence probability of a possible world W is:
PW) = P(RNW) x )

REGP,RNW #¢

(1-P(R))
REGP,RNW=¢
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where P(R N W) refers to the occurrence probability of a
record which is in both R and W.

As an example, Table I records the ID of speeding vehicles
(Vehicle in the table) and speed (Speed) captured by sensor
nodes (SID) at certain location (Loc.) and time (Time). Each
record is given an occurrence probability (P) representing its
confidence to be true. In this example, records R1 and R2
can not appear in the same possible world; that is, R1 and
R2 are exclusive. R3 is independent with them; this means
the generation rule containing R3 only is independent with
generation rule {R1, R2}. There are 6 possible worlds in all
for this uncertain database, as shown in Table II, along with
corresponding occurrence probabilities.

RID | SID Time Loc. | Vehicle | Speed | P
R1 S1 | 2:00PM L1 HB1235 120 0.7
R2 S1 | 2:00PM L1 HB1238 150 0.2
R3 S6 | 3:45PM | L17 | HA2568 170 | 0.9
TABLE 1
SPEEDING VEHICLES RECORDS.
Possible World | Occurrence Probability
Wi = {¢} 0.01
Wy = {R1} 0.07
Ws = {R2} 0.02
Wi = {R3} 0.09
Ws = {R1, R3} 0.63
Ws = {R2, R3} 0.18
TABLE II
POSSIBLE WORLDS OF TABLE I.
B. Advanced Models

There are a number of advanced models. In this subsection,
we introduce three representatives.



o Fuhr and Rolleke model uncertainty based on non-first-
normal-form (NF2) [33] where records in a relation are
assigned probabilistic weights. Imprecise attribute values
are modelled as a probabilistic sub-relation. Moreover, a
probabilistic relational algebra (PRA) is proposed as a
generalization of standard relational algebra.

Tuple ¢ in a probabilistic relation modeled by NF2
contains three aspects, its attribute values, an event ex-
pression t.np and event probability t.5. As shown in
Figure 2 [33], the relation BOOK consists of atomic
attributes BNO, YEAR, and attributes PRICE, INDEX,
AUTHOR which are modeled by subrelations. Types of
probabilistic relations include “deterministic”, “indepen-
dent”, “disjoint” and “dependent”. For example, subre-
lation price is disjoint meaning that one and only one
event between BEP1 and BEP?2 can be true. INDEX
is independent meaning that both BEI1 and BEI2
can be true with different confidence and AUTHOR is
deterministic indicating that both values for NAME in this
subrelation takes the same event probability as the tuple
it belongs to, namely, 1.0.

Clearly, general model introduced earlier can also be used
to model such NF2 probabilistic relations, in a clearer and
more concise way.

Sarma et al integrates lineage to model uncertainty [63].
Linage is associated with a data item carrying informa-
tion about its derivation. A model ULDBs (Uncertainty-
Lineage Databases) is developed by extending stan-
dard SQL relational model with the following four as-
pects [10].

1) alternatives capturing the uncertainty of contents of
a tuple.

2) maybe annotations “?” representing the uncertainty
about the presence of a tuple.

3) confidence values quantifying the degree of above
two types of uncertainties.

4) lineage recording derivation information of tuple
alternatives.

In fact, besides a new ingredient lineage, this model is
almost identical to the independent model in object-level
uncertainty.

Table III gives an example of ULDBs. Record R1 can
be either of the two tuples with different confidence val-
ues. R2 exists in this table with confidence 0.9. Table IV
captures vehicle ID and driver names. We join these two
tables and project on the driver attribute, clearly obtaining
only one tuple (John). We call this tuple RS. Lineage
captures how RS is derived from the original two tables
by a function A over the alternatives of tuples. A(R5,1) =
((R1,2), (R3,1)) means that the first alternative of RS is
derived from joining of the second alternative of R1 and
first alternative of R3.

Sen and Deshpande utilize a probabilistic graphical
model [57] to facilitate query evaluation over uncertain
data with general forms of correlations [67]. Besides

RID (Vehicle ID, Speed)
R1 (HB1235, 120): 0.7 || (HBI1238, 120): 0.2
R2 (HA2568, 170): 0.9 ?
TABLE III
VEHICLE AND SPEED.

RID | (Vehicle ID, Driver)
R3 (HB1238, John)
R4 (HC2457, Wendy)

TABLE IV
VEHICLE AND DRIVER.

independence and mutual exclusivity, implies and nxor are
also explored; that is, the presence of one tuple implies
absence of other tuples and high positive correlation
between two tuples, respectively. Each tuple is associated
with a boolean valued random variable X;, namely false
and frue. In the probabilistic graphical model, nodes
represent random variables while edges represent cor-
relations. Thus different types of correlations, such as
complete independence, mutual exclusivity, positive cor-
relation can be modelled. Query evaluation problem with
correlations is then transformed into equivalent problem
under probabilistic graphical model and can be solved
using existing techniques such as inference algorithms.

A lot of research work aims to represent uncertainty besides
what we introduced above, for instance [1], [8], [9], [31], [32],
[39]. We omit details from the paper due to the space limit.

III. ANALYZING UNCERTAIN DATA

In this section, we introduce existing work on analyzing un-
certain data, which can be divided into two groups: relational
uncertain data and spatial uncertain objects.

Note that an uncertain object may be described by either a
continuous or a discrete case. In continuous cases, an uncertain
object U may be described by a probability density function
(PDF) fy such that L v fu(w)du = 1; Nevertheless, in
many applications PDFs are not always available. Instead, an
uncertain object U is represented by a set of instances such
that each instance u € U has a probability P(u) to appear.
Such a representation is also referred as a discrete case, has
the property that 0 < P(u) < 1and ) ., P(u) = 1.

A. Relational Uncertain Data

Query Evaluation. Cheng er al present a broad classification
of probabilistic queries over one-dimensional uncertain data
as well as techniques for evaluating probabilistic queries [21].
There are four types in all, value-based non-aggregates, entity-
based non-aggregates, value-based aggregates and entity-based
aggregates according to two aspects: 1) the query requires
qualifying objects or values and 2) the query is aggregate-
based or not. An example of entity-based non-aggregate query
is: given an interval [I,r] where | < r, return a set of tuples
(T;, P;) where attribute a of T; is within the range [l,r] with
non-zero probability F;. Bounding and pruning techniques
are deployed to evaluate these queries. In [25], Cheng et al
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explore access methods to also support range search for one
dimensional data only.

A series of work has been done by Dalvi and Suciu from
University of Washington to evaluate probabilistic queries.
In [29], they tackle the problem of evaluating queries with
uncertain predicates. Optimization algorithms that can evaluate
efficiently most queries are presented. They also show that
the evaluation of some queries is # P-complete; these queries
are approached in two different methods: a heuristic avoiding
significant errors and a Monte-Carlo simulation algorithm with
precision guarantees. In [27], they propose to answer queries
from statistic and probabilistic views. In [28] a very clean and
complete theoretical result is provided that the complexity of
evaluating conjunctive queries over uncertain data set is either
PTIME or #P-complete.

Sen and Deshpande utilize probabilistic graphical model
to approach the same problem in uncertain data sets with
correlated tuples as introduced in Section II [67].

Aggregate Queries. A most recent work on aggregate query
processing over relational uncertain data is from Stanford
InfoLab as a function supported by their system Trio [53].
Five types of aggregate operators are tackled, COUNT, MIN,
MAX, SUM and AVG. Among them, COUNT, MIN and MAX
are relatively easy and there exist polynomial algorithms [35].
However, it is shown in [30] that results for SUM and
AVG may be different in each possible world and computing
SUM or AVG is #P-complete. Three approximate alternatives
are proposed to avoid exhaustively materialize all possible
results caused by “exact” aggregation in uncertain databases:
lowest possible value, highest possible value and expected
value. For instance, lowest possible value of SUM (LSUM) is
defined as the sum of lowest value from each uncertain object
(e.g., sets of tuples from probabilistic table that are governed
by a generation rule). Specifically, expected-average (EAVG)
value is approximated using expected-sum (ESUM) divided
by expected-count (ECOUNT). Transformed aggregate queries
are processed using TriQL techniques used in Trio which is
an extension of SQL.

A thorough and fundamental study of OLAP against un-
certain and imprecise data has been conducted in [17]. Other

major work may be found in [19], [40], [51], [61], [62], [66].

Join Queries. Join queries over one dimensional uncertain
data are defined by Cheng et al in [24] in a continuous
case. Uncertainty over a data item a is parameterized with
an uncertainty interval .U and PDF a.f(x). Uncertainty
comparison operators, equality, inequality, greater than and
less than are defined in a continuous fashion. Take equality
between two uncertain items a and b as an example. Since
the PDFs for both a and b are continuous, the probability that
a equals b could be infinitesimally small. A new parameter
resolution (c) is introduced to avoid this: a equals b if they
are within ¢ distance i.e., |a — b| < ¢. The probability that a
equals b with resolution c is defined as:

+oo
Pla=.b) = /_ a.f(x) - (b.F(x+c)—bF(x—c)dx (3)

where b.F'(z) denotes the cumulative distribution function
(CDF) of b.

Denote 6,, as a uncertainty comparison operator and R and
S are uncertain data sets; probabilistic join query (PJQ) returns
all pairs of tuples (R;,S;) with P(R;0S;) > 0, where R; €
R,S; € S. Probabilistic threshold join query (PTJQ) further
imposes a probability threshold and only uncertain item pairs
with matching probability value no less than this threshold
satisfy PTJQ. Based on this threshold, pruning techniques in
different indexing levels are proposed to answer PTJQ.

A recent work on join queries on uncertain data is given
in in a top-k fashion [7] by Agrawal and Widom. In such
confidence-aware joins, only results with top-k matching con-
fidence will be output.

Top-k Queries. Top-k queries are important in analyzing
uncertain data. Unlike a top-k query over certain data which
returns the k best alternatives according to a ranking function,
a top-k query against uncertain data has inherently more
sophisticated semantics. Soliman et al [71] first relate top-k
queries with uncertain data. They define two types of important
queries - U-Topk and U-kRank, regarding discrete cases.

U-Topk returns a set of k£ records which as a whole have
the highest probability to be the top-k results in all possible




worlds. A precise definition is as follows [71].

Let D be an uncertain data set with possible worlds
space W = {Wh, ..., W, }. Let 7 = {T*, ..., T™}
be a set of k-length record vectors, where for each
T% € T: (1) records of T" are ordered according to
scoring function JF, and (2) 7" is the top-k answer
for a non empty set of possible worlds W (7T%) C W.
A U-Topk query, based on F, returns T* € T, where

T = argmazrier (X pew i P(w)).

U-kRank retrieves k ordered records where the i-th record has
the highest probability of ranking in the i-th position among
all possible worlds [71].

Let D be an uncertain data set with possible worlds
space W = {Wy,....W,}. For i = 1,....k, let
{z},...,27"} be a set of records, where each record
o] appears at rank i in a non empty set of possible
worlds W (x]) € W based on scoring function F.
A U-kRanks query, based on F, returns {z};i =
1,....k}, where a} = argmaz (ZweW(z{) P(w)).
Methods proposed in [71] navigate all possible states of the
search space, meanwhile minimizing the number of tuples ac-
cessed. Based on novel observations, Yi et al [75] significantly
improve the efficiency while tackling the same queries.
Threshold based top-k queries defined by Hua et al [35],
[36] aim to retrieve all records whose probability of being
top-k results in all possible worlds is no less than a given
probability threshold. Re ef al [60] deal with query evaluation
on probabilistic database and results are ranked according to
the probability of satisfying a given query.

B. Multi-dimensional Spatial Uncertain Data

Range Queries. The first index structure supporting range
queries on multi-dimensional spatial uncertain data with ar-
bitrary PDFs is U-tree [72]. U-tree is a novel modification
of R-tree to facilitate a set of new pruning and validating
techniques. A d-dimensional uncertain object U is modeled
using a d-dimensional uncertain region U.ur and probability
density function U.pdf(x). Suppose the query region of a
range query @ is r, the appearance probability of U in rg
is defined as:

Panl0.Q) = [

U.urnrg

U.pdf (z)dx 4

where U.ur Nrg is the intersection of U.ur and rg. Given a
probability threshold p, uncertain objects with P,,,(U, Q) > p
are retrieved by the range query.

The basic idea to build a U-tree is illustrated in Figure 3
where polygon U.ur is the uncertain range of 2-dimensional
uncertain object U. For a given probability p;, in each dimen-
sion, two lines are calculated. In the horizontal dimension,
U has the probability p; to occur on the left side of line
l1—, also the probability p; to occur on the right side of
line /. Similarly, ls_ and lo are calculated in the vertical
dimension. The shadowed region forms the probability con-
strained region (PCR) of U with respect to p;. Such a region

is used to prune or validate objects. There are multiple PCRs
computed beforehand to facilitate range query processing,
as shown in Figure 4. To tradeoff between space costs and
pruning/validating abilities, a U-tree structure is constructed
based on the approximation of such polygons.

In [12], [14], Bohm et al study range queries with the
constraint that instances of uncertain objects follow Gaussian
distribution. Results are ranked according to the probability
of satisfying range queries. A more recent work addressing
indexing high dimensional uncertain data is [4].

ik
[ p:
ip3

-d

I

Fig. 3.

Pruning/Validating
in U-tree.

Fig. 4. Multiple PCRs.

Nearest Neighbor Queries. The problem of nearest neighbor
query on uncertain objects is tackled in [43]. In a discrete
case, both uncertain objects and a query object are represented
by a set of s sampled instances. The probability that uncertain
object U is the nearest neighbor of query object Q P, (U, @)
is defined based on the instance pairs from U and Q.

Zz’,jel...s P (s, Qj)
2

where P, (u;, ¢;) is the probability that instance u,; € U is the
nearest neighbor of instance g; € Q. P, (U, @) in continuous
cases is computed based on the probabilistic distance between
@ and U and the probabilistic distance between () and other
objects except U.

To facilitate query processing, instances inside an object are
clustered into several groups bounded by minimal bounding
boxes (MBRs) and indexed by R-tree. Thus higher level
pruning and validating measures can be applied.

Constrained nearest neighbor query is studied in [20] with a
pre-given probability threshold. Only objects with probability
no less than this threshold of being nearest neighbor of the
query object will be output.

S

Skyline Queries. For two points » and v in a multi-
dimensional space, u dominates v (u < v) if in each dimension
the coordinate of  is not greater than that of v and there is one
dimension in which the coordinate of v is smaller than v. For
a given data set, the skyline operator returns all points in the
data set which are not dominated by other points. As illustrated
in Figure 5, skyline points are a, b and c since they are not
dominated by any other points. Skyline operator over uncertain
objects is more complex since it involves sophisticated analysis
of probability distribution of each uncertain object. As in
Figure 6, generally instances in each uncertain object have
different dominating ability. This problem is firstly approached



by Pei et al in [59]. In a continuous case, suppose that f is the
PDF of uncertain object U in the data space D, the probability
for U to be a skyline object is:

Pr(U) = / s T a-

YV AU

f(v)dv)du (5)
v<u
Here HV#U(l_Iv<u f/(v)dwv) is the probability that the point
u € U is not dominated by any uncertain objects. f’ denotes

the PDF of V. In a discrete case, the skyline probability of U
is:

PrU)=>Y (Pwx [ = > Pw)) ®

uelU VYV AU vEV,u<u

[Tyl = > evv<u P(v)) is the probability that u € U is
not dominated by any other objects. Recall that P(u) denotes

the appearance probability of instance w.

°A
°B
xC

><Cl X

Fig. 5. Certain objects. Fig. 6. Uncertain objects.
Bounding-pruning-refining iteration is deployed to achieve

efficiency. Two algorithms, bottom-up and top-down, are
developed. The bottom-up algorithm computes P(U) from
instance level. After calculating skyline probabilities of some
selected instances, these values are used to prune other in-
stances and objects. Top-down algorithm, on the other hand,
partitions instances of one uncertain object into several groups
and apply pruning techniques in the group and object level.

A variation of uncertain skyline, monochromatic and bichro-
matic reverse skyline search over uncertain objects, is studied
in [48].

Similarity Joins. Kriegel et al study similarity joins on
uncertain spatial objects in [42]. The probability that distance
between two uncertain objects U and V' is within a range [a, b]
is defined as,

b
Pla < d(U,V) <b) = / LUV (@) da @

where f4(U, V) is the probabilistic distance function between
U and V. Although f;(U,V) may be computed directly for
some uncertain object representations, for efficiency reasons,
Kriegel et al propose algorithms based on Monte-Carlo sam-
pling technique where each uncertain object is represented by
a set of s sampled instances. In this case, the similarity join
probability between U and V is defined as follows. Assume
all instances in an uncertain object take the same probability
to appear

us, v5)|d(u,v5) < €,1 <i,j <s}
2

P, V) < o) =

S

Fig. 7. Probabilistic similarity join

Here Py(y;u;)<c denotes the probability that the distance
between wu; and v; is not greater than e, where u; € U and
v; € V. As shown in Figure 7 where there are totally 9 pairs
of instances, only the distances of three pairs of instances
connected with solid line are smaller than a given distance
threshold; consequently P(d(U,V) < €) = 1/3. In their
algorithms, instances are also grouped and indexed using R-
tree. Then effective pruning techniques based on ¢ are applied.
For any two input uncertain objects and distance threshold
€, the similarity join probability between these two objects
regarding e will be output by their algorithms.

In [13], a similar problem — similarity matching is inves-
tigated. In their settings, uncertainty of feature vectors follow
Gaussian distribution. A novel index structure, Gauss-tree, is
developed for similarity matching processing.

Clustering and Mining. Clustering uncertain objects is
addressed in [44]. The distance between two uncertain objects
is the same as Equation(7). Key concepts in density-based
clustering on uncertain objects, such as core objects, core
object probability, and reachability probability among objects
are defined where a core object has a dense neighborhood and
both core object probability and reachability probability are
derived based on the Equation(7), respectively. Novel density-
based clustering algorithm FDBSCAN is then developed
based on these new concepts.

Ngai et al address the same problem in [55] using clustering
algorithm based on the traditional K-mean algorithm. Different
from the probabilistic distance functions in [44], distance
values used between a pair of uncertain objects or between
an uncertain object and a cluster are expected values. For
arbitrary PDF, such expected values often involve expensive
numerical integration calculation. Pruning techniques are also
proposed to avoid such an expensive step. Chau et al tackle
the problem of mining uncertain data in [18] as an extension
of the techniques proposed in [55].

C. Other Aspects in Analyzing Uncertain Data

Query evaluation over uncertain data has also been studied
against other applications, such as data streams [26], sensor
networks [23], [46], moving objects [22], video retrieval [12],
XML data [2], [38], [37], [41], [56], [68], categorical data [69],
etc. Theoretical problems such as functional dependency [65]
and confidence computation [64] analysis over uncertain rela-
tion data have also been addressed. Privacy issues in uncertain
semantics are studied in [3], [15]
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IV. EXISTING SYSTEMS

Many systems have been developed and implemented to
support uncertain data management. We briefly summarize
three representatives below.

Trio. Trio is developed by Standford InfoLab [6], [11], [54],
[74]. As a database system, it not only tackles modelling and
analyzing data but also the accuracy and lineage of data. Trio is
developed based on data model ULDB which is introduced in
Section II. It is implemented on the top of traditional relational
DBMS (PostgreSQL). Query language in Trio is an extension
of SQL, TrioQL. TrioQL handles queries, as well as accuracy
and lineage of data. Figure 8 illustrates the system architecture
of Trio [54]. The Trio API accepts TrioQL as well as regular
SQL queries from client and translates them into standard
SQL queries; in the relational DBMS, data tables are encoded,
namely, are integrated with uncertainty information such as
confidence and alternatives as introduced in Section II. Trio
Stored Procedures handles confidence and lineage information.

MystiQ. MystiQ is a database system managing uncertainty
in a probabilistic view developed by the University of Wash-
ington [16]. The system contains four main components,
data modelling language (mDML), data definition language
(mDDL), preprocessor and query translation engine. mDDL
defines approximate match operators and allows users to
specify confidence in query predicates. Below is an example
query in mDDL [16].

SELECT F.title, D.name
FROM Director D, Films F
WHERE D.did = F.did

AND D.name ~ ’Copolla’
AND F.year ~ 1975

[CONFIDENCE = 0.9]
[CONFIDENCE = 0.7]

This query retrieves film title and director name where the
film was produced in approximately 1975 with confidence 0.7
and the director name is approximately *Copolla’ with confi-
dence 0.9, from tables Director and Film. mDDL is integrated
with the new components to manage uncertainty; the new
components include predicate functions to specify measure
used to generated similarity probabilities, global constraints
for detecting and resolving inconsistency, etc. Based on mDDL

specification, the preprocessor generates additional relational
tables integrating probability values. The query translation
engine is a critical component in MystiQ, translating queries
written in mDML into regular SQL queries. Query evaluation
techniques in MystiQ are introduced in [29], [60].

URank. URank is a system mainly designed for answer-
ing U-Topk and U-kRanks queries from Waterloo University
and UIUC [70]. Querying techniques are introduced in [71].
URank is also built on traditional relational DBMS with
new components to cope with uncertainty. The system is
composed of two layers, Storage Layer and Processing Layer.
Physical data and generation rules are manipulated in Storage
Layer, as well as different access methods, such as random
access and sorted access. Processing Layer is mainly based on
techniques in [71]. Space Navigation accesses data from the
Storage Layer. Each accessed tuple is sent to the component
State Formulation to calculate probabilities of newly generated
states. Rule Engine is the part of the system to handle such
state probability computation based on generation rules.

The other systems managing uncertain data may be found
in [45], [50], [52].

V. CONCLUSION

Almost every problem in conventional databases needs to
be reinvestigated under uncertain semantics since the uncertain
nature poses great and unique technical challenges. In spite of
significant amount of existing work to analyze uncertainty as
introduced in this short survey, a large gap still exists to fully
interpret uncertainty. Possible future research work includes
uncertainty studies against various applications such as data
streams, dominating queries, spatial queries in high dimen-
sional space, XML data, graph data, data mining, statistics
estimation, time series, etc.
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