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Abstract In many applications, XML documents need to be modelled as graphs.
The query processing of graph-structured XML documents brings new challenges.
In this paper, we design a method based on labelling scheme for structural queries
processing on graph-structured XML documents. We give each node some labels, the
reachability labelling scheme. By extending an interval-based reachability labelling
scheme for DAG by Rakesh et al., we design labelling schemes to support the
judgements of reachability relationships for general graphs. Based on the labelling
schemes, we design graph structural join algorithms to answer the structural queries
with only ancestor-descendant relationship efficiently. For the processing of sub-
graph query, we design a subgraph join algorithm. With efficient data structure,
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the subgraph join algorithm can process subgraph queries with various structures
efficiently. Experimental results show that our algorithms have good performance
and scalability.

Keywords XML · query processing · subgraph query · coding · structural join

1 Introduction

XML has become the de facto standard for information representation and exchange
over the Internet. XML data has a nesting structure. XML data is often modelled as
a tree. However, XML data may also have IDs and IDREFs that add additional
relationships. With such property, XML data can also be represented in graph
structure. In many applications, data can be modelled as a graph more naturally
than a tree. For example, the relationship of publications and authors adapts to be
represented as graph structure. Because one paper may have more than one authors
and one author may have more than one papers. A fragment of such information is
shown in Figure 1.

Of course, a graph-structured XML document can be represented in tree structure
by duplicating the elements with more than one incoming paths. But such strategy
will result in redundancy. If the information in Figure 1 is represented with tree
structure, the element author will be duplicated.

Some query languages are proposed for XML data. XQuery [4] and XPath [8]
are query language standards for XML data. Structural queries on graph-structured
XML data show more power and can request subgraphs matching the general
graph-modelled schema described in the query. For example, the query to a graph-
structured XML document in Figure 1 requests author elements with publication
both in proceeding and journal.

Query processing on graph-structured XML data brings new challenges:

• More complex queries are defined on graph-structured XML data. Such queries
are also graph-structured to retrieve subgraphs of an XML document. The
schema of a subgraph can be various, possibly including nodes with multiple
parents or circle. Existing method cannot process such queries efficiently.

• One way to processing structural queries on XML data is to encode the nodes
of graph with some labelling scheme. With the labelling scheme, the structure
relationship such as parent-child or ancestor-descendant can be judged without
accessing other information. In the query processing on tree structured XML, it

Figure 1 An example of
graph-structured XML.
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is a well-studied problem. But most of labelling schemes of XML representations
and query processing methods are based on tree model. They cannot be applied
on graph-structured XML data directly.

• Another kind of query processing methods for XML uses structural index such
as 1-index [16], F&B index [14] to accelerate the query processing. However,
the structural index of graph-structured XML document often contain many
nodes. It is not practical to use structural index directly to process query on
graph-structured XML. For example, the number of nodes in F&B index of tree
structured 100M XMark document has 436602 nodes while the number of nodes
in F&B index of graph-structured 100M XMark document has 1.29M nodes [14].

Using labels to represent the structural relationship between nodes is a practi-
cal method to process query on graph-structured XML data. With well-designed
labelling scheme, the structural relationship between two nodes can be determined
efficiently without accessing any other node. In this paper, we present reachability
labelling scheme which can be used to process ancestor-descendant queries. We de-
sign interval-based reachability labelling scheme for general-graph-structured XML
document.

Based on the labelling schemes presented in this paper, we present graph struc-
tural join to process reachability queries efficiently.

To process the complex queries with a graph schema on graph-structured XML
document, we design a novel subgraph join algorithm based on the reachability
labelling scheme. In order to support the overlapping of intervals in the coding,
we design a data structure interval stack. Subgraph join algorithm uses a chain of
linked interval stacks to compactly represent partial results. The subgraph join algo-
rithm can be used to process subgraph queries with both adjacent and reachability
relationship.

The contributions of this paper can be summarized as follows:

• We generalize the coding scheme in [17] and present an effective labelling
scheme to judge the reachability relationships between nodes in a general
digraph.

• We use duplication to make the coding possible to be stored in relations or apply
sorted based join algorithms on them.

• We present two efficient structural join algorithms on graph-structured XML
data, GMJ and IGMJ, based on the labelling scheme for graph.

• We present subgraph query, a novel kind of structural query using general graph
as matching schema. To process subgraph queries efficiently, a novel subgraph
join algorithm is proposed.

• Our experiments show that our labelling scheme is efficient for XMark data. Our
two structural join algorithms and subgraph join algorithm outperforms existing
query processing methods significantly, respectively. All algorithms have good
scalability.

The rest of the paper is organized as follows: Section 2 introduces some background
knowledge. Section 3 presents the reachability labelling scheme. Structural join
algorithms based on the labelling scheme are given in Section 4. Data preprocessing
and subgraph join algorithm are presented in Section 5. We present our experimental
results and analysis in Section 6. Related work is described in Section 7. We conclude
the paper in Section 8.
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2 Preliminaries

In this section, we briefly introduce the graph-structured XML data model as well as
terms and notations used in this paper.

XML data is often modelled as a labelled tree: elements and attributes are
mapped into nodes of the tree; directed nesting relationships are mapped into edges
in the tree. A feature of an XML document is that from two elements in XML
document, there may be an IDREF representing reference relationships [21]. With
such feature, an XML document can be modelled as a labelled directed graph
(digraph): elements and attributes are mapped into nodes of the graph; directed
nesting and referencing relationships are mapped into directed edges in the graph.
An example XML document is shown in Figure 2a. It can be modelled as the digraph
shown in Figure 2b. Note that the graph in Figure 2b is not a DAG.

Queries in XML query languages such as XQuery[4] use tree pattern for matching
relevant parts of data in a XML document. The query pattern node labels include
element tags matching, attribute-value comparisons and string values and the query
pattern edges are either parent-child edges or ancestor-descendant edges. In this
paper, we focus on structural query with only element tags matching and edges
representing relationship between tags but not value comparisons. In XPath, the
parent-child relationship is represented in ‘/’ and ancestor-descendant relationship
is represented by ‘//’.

However, when an XML document is modelled as a graph, the ancestor-
descendant relationship (as well as parent-child relationship) can be extended based
on the notion of reachability. In [14], IDREF edges are represented as ⇒ and ⇐ for
the forward and backward edges, respectively. In a graph-structured XML document,

<a id="a1>
<b id="b1">
<d id="d1" f="f1"/>
<d id="d2">
<f id="f1"/>
</d>
<d id="d3" f="f1" c ="c 1"/>
</b>
<c  id="c 1">
<e id="e1" d="d1 d2 d3"/>
<e id="e2" d="d1 d2 d3"/>
<e id="e3" d="d1 d2 d3"/>
</c >
</a>

An Example XML Document ba The Corresponding XML Graph

Figure 2 An example XML document and its graph structure.
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Figure 3 Example queries.

cba

structural queries are defined based on the structural relationship between nodes.
In the graph structure G of an XML document, two nodes a and b satisfy adjacent
relationship if and only if an edge from a to b exists in G; two nodes a and b satisfy
reachability relationship if and only if a path from a to b exists in G. A reachability
query a � d is to retrieve all pairs (na, nd) in G satisfies two conditions: 1)na has tag
a and nd has tag d; 2)na and nd satisfy reachability relationship in G. For example,
the result of reachability a � e in the graph in Figure 2b includes e1, e2, e3. Adjacent
queries can be defined similarly.

The combination to reachability restraints forms subgraph queries. Subgraph
query will retrieve the subgraphs of graph-structured XML matching the structure
given by the query. The graph corresponding to the query is called the query graph.
The nodes in a query graph represent the tag names of required elements. The edges
in a query graph represent the relationship between required elements. If an edge
in a query graph represents adjacent relationship, it is called an adjacent edge. If an
edge in a query graph represents reachability relationship, it is called a reachability
edge. For example, the query shown in Figure 3a on the XML document shown in
Figure 2a represents the query to retrieve all the subgraphs with the structure that an
a node connects to a c node, d node reaches to this c node and this c node reaches an
f node. The result is shown in Figure 3c.

Since trees are a special case of graphs, twig queries can be represented as a special
case of subgraph queries. For example, a twig query “d[//e AND c]” on an XML
document shown in Figure 2a can be represented as the subgraph query shown in
Figure 3b.

3 The coding of graph-model XML document

In this section, we describe a labelling scheme of general-graph-structured XML
documents. We extend the labelling scheme for directed acyclic graphs (DAGs)
in [17] to support general digraphs. Therefore, with such labelling scheme, the
reachability relationship between two nodes in a general digraph can be judged
efficiently without accessing other information.
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3.1 The coding of DAGs

In this subsection, we describe DAG encoding method in [17] briefly. In such coding
scheme, a list of intervals and an id is assigned to each node. We briefly summarize
the encoding method for a DAG D in the following: First, an optimal tree-cover T of
the DAG D is found . T is traversed in a depth-first manner. During the traversal, an
interval [x, y] is assigned to each node n of T, where y is the postorder of n during the
traversal. x is the smallest postorder number of all n’s descendants in T. Next, all the
nodes of D are examined in the reverse topological order. At each node n, if possible,
all the intervals of its out-going nodes in D are copied and merged to its code.

The judgement of the reachability relationship between two nodes a and b is to
check whether the postorder of b is contained in one of the intervals of a.

An example of encoding a DAG D is shown as following. The coding of the DAG
in Figure 4a is in Figure 4b. In Figure 4b, the subgraph formed with solid line is the
tree cover of D. We use postid to denote the postorder number of each node, which
is also the second value of the first interval of its code.

3.2 The coding of general graphs

We now generalize above labelling scheme for directed cyclic graphs. We assume
that the graph consists a single root. The root is a node without any incoming edge.
Otherwise, we can pick up any root node or add a virtual root node.

Figure 4 The coding scheme.

a The DAG contracted
from XML Graph

a 1

b 1

d 1 d 2

af1

R

5 , [0 ,5 ]

4 , [0 ,4 ]
3 , [ 0 ,3 ]

1 , [ 0 ,1 ]

0 , [ 0 ,0 ]

2 , [ 2 ,2 ]

[0 ,0 ]

b Interval Coding for the DAG

ac 1

a 1

b 1

d 1 d 2 d 3 e 1 e 2 e 3

af1

5 ,  [0 ,5 ]

4 ,  [0 ,4 ]

1 , [ 0 ,1 ]
[0 ,0 ]
2 , [ 2 ,2 ] 3 ,  [0 ,3 ]

3 ,  [0 ,3 ]

3 , [ 0 ,3 ] 3 , [ 0 ,3 ] 3 ,  [0 ,3 ]

0 , [ 0 ,0 ]

c Interval Coding for the XML Graph
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The reachability coding of a general digraph G is generated with the following
steps:

1. All strongly connected components (SCC) with number of nodes greater than
one are found.

2. Each SCC C of G is contracted to a representative node nC. Here, the contraction
of a SCC C means that all the nodes of C are merged to nC and each edge with
one vertex in C and the other vertex v in G − C is change to the edge between
nC and v. As a result, G is reduced to a DAG G′ (the correctness of this step
is proved in Theorem 1). Suppose SCC S = {node0, node1, · · · , nodet} in G is
contracted in to nodeS. nodeS is the representative node in G′. If a node in G is
not contracted, then its corresponding node is itself in G′.

3. G′ is encoded using the method introduced in Section 3.1.
4. For each nodeS in G′, assuming its code is Cs, Cs is assigned to every

node0, node1, · · · , nodet in G. It means that all nodes in the same SCC have the
same codes, i.e., the list of intervals and the postid number.

For example, a directed cyclic graph G is shown in Figure 2b. In order to encode
G, the first step is to contract all the SCCs. In G, there is only one such SCC,
S = {d3, c1, e1, e2, e3}. By contracting this SCC, a DAG G′ shown in Figure 4a is
generated. In G′, R is the representative node for SCC S. The interval codes of G′
is shown in Figure 4b. At last, the intervals associated with R, i.e., [0, 3], is assigned
to each node in S in G. As a result, d3, c1, e1, e2, e3 all have the same interval code
[0, 3]. The interval codes of the graph G are shown in Figure 4c. The postid of each
node is the second value of its first interval. For example, d3.postid is 3.

The following theorems ensure the correctness of the encoding method.

Theorem 1 A directed cyclic graph G is converted to a DAG by contracting all the
SCCs to representative nodes.

Proof Two nodes nCa , nCb are representative nodes in contracted graph G′ of G
correspond node set Ca and Cb , respectively. nCa and nCb must not be strongly con-
nected. Otherwise, the nodes in Ca and Cb satisfy strongly connection relationship.
It is contradictory to that Ca is an SCC. So in the way stated above, G is converted
into a DAG. ��

Theorem 2 For two nodes a and b of an XML graph encoded in steps
stated, the codea = {[a0.x, a0.y], ..., [an.x, an.y], postida} and codeb ={[b 0.x, b 0.y], ...,
[b m.x, b m.y], postidb }. postida and postidb are the postorders of a and b in the tree
cover T of G′ generated from G by contracting SCCs, respectively. Then a � b if and
only if ∃i(0 ≤ i ≤ n) such that ai.x ≤ postidb ≤ ai.y (condition P).

Before proving Theorem 2, we define some symbols. G = (E, V) is a directed
graph. V = Vo ∪ Vc. Vo is the set of nodes that are not contracted. Vc is the set of
nodes to be contracted. G′ = (E′, V ′) is the graph generated from G by contracting
all SCCs. V ′ = V ′

o ∪ V ′
c. V ′

o is a subset of nodes in G. V ′
c is the set of the nodes

contracted from SCCs from G. Vo = V ′
o. Suppose the SCC that a node n ∈ Vc belongs

to is Cn. The node in V ′
c contracted from Cn is vCn . The code of each node is obtained

in G′. If G is a DAG, then Vc = ∅.
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Lemma 1 Let a, b be two nodes in a graph G. Corresponding nodes of a and b in the
contracted DAG G′ are a′ and b ′, respectively. If a′ � b ′, then a � b.

Proof Suppose these is no path from a to b in G. a and b are not in the same SCC.
Since the contraction does not bring new path in the graph but only make the path
with edges in SCC short. So a′ and b ′ are not connected in G′. It is contradictory with
a′ � b ′. So a′ � b ′ ⇒ a � b . ��

According to Lemma 1, we give the proof of Theorem 2.

Proof (Theorem 2) Since G′ is a DAG, based on [17], for a, b ∈ G′, a � b iff the
code of a and b satisfy P.

For two nodes a, b ∈ G and a � b , there are four instances, a ∈ Vo or a ∈ Vc and
b ∈ Vo or b ∈ Vc. In the instance a ∈ Vo and b ∈ Vo, [17] has proved the a and b
satisfied P. If a ∈ Vo and b ∈ Vc, in G′, a � vCb . So that the codes of a and vCb satisfy
P. b and vCb have same code. So the code of a and b satisfy P. For the same reason,
when a ∈ Vc and b ∈ Vo, the codes of a and b satisfy P. When a ∈ Vc and b ∈ Vc, if
vCa = vCb , a and b have same SCC codes, satisfying P. If vCa �= vCb , vCa � vCb . The
codes of vCa and vCb in G′ satisfy P. Since a has same code as vCa and b has same
code as vCb , the code of a and b satisfy P.

Suppose a and b are two nodes and their codes satisfy P. The corresponding nodes
of a and b in G′ are a′ and b ′ respectively. a′ � b ′. According to Lemma 1, a � b .

��

Time complexity analysis The finding of all SCCs can leverage the DFS-based
algorithm in [20], and its time complexity is O(n), where n is the number of the nodes
of G. The efficiency of contracting step is O(nc), where nc is the total number of nodes
belonging to the SCCs. The complex of encoding a DAG is O(n′) [17], where n′ is
the number of nodes in the DAG. The last step needs O(nc) time. Since both nc and
n′ are smaller than n, the time complexity of encoding method is O(n).

4 Join algorithms based on the labeling scheme

In this section, we design two join-based algorithms to process reachability queries
on graph-structured XML data using the labeling scheme presented in Section 3.
The structural join algorithms compute the result of a reachability query a � d. The
labelling schemes of nodes with tag a are in Alist and the labelling schemes of nodes
with tag d are in Dlist. The format of Alist and Dlist will be presented in Section 4.1.

4.1 Preprocessing of the input

One difference of the interval labeling scheme of a graph and that of a tree is that
there may be more than one interval assigned to a node. The reachability relationship
of two nodes a and b can be judged based on Theorem 2. The nodes to joined are
preprocessed by inverting the nodes and their corresponding interval codes. That is,
if a node has k intervals, it is treated as k nodes: for Alist, each element has one
interval; for Dlist, each element has a postid and the id of the SCC of this element.
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Then both inputs are sorted: for the Alist, the list is sorted on the intervals [x, y] by
the ascending order of x and then the descending order of y; for the Dlist, the list is
sorted by the ascending order of postid. The intuition is to leverage the order in the
intervals and postids to accelerate join processing.

We note that the same interval will occur more than once in the preprocessed
Alist, for one of the following two reasons:

• All the nodes with the same tag in an SCC have the same codes, hence intervals.
• Even if two nodes do not belong to the same SCC, there could be some interval

associated with both of them. This is because in the third step of the DAG
encoding, when considering a node n with multiple children, some intervals of
its children will be appended to n. If some added interval of a child c cannot be
merged in the existing interval of n, c and n with the same tag will have the same
interval even if they do not belong to any SCC together.

Similar case exists in Dlist as well because all nodes in the same SCC have the same
postid.

Implementation-wise, in order to decrease the interval set of processing, repeated
intervals with different node IDs are merged into one interval with multiple node
IDs. Repeated postids in Dlist are also merged in a similar way.

For example, before the preprocessing for the query d � e against the XML doc-
ument shown in Figure 4c, Alist is {d1([0, 1]), d2([0, 0], [2, 2]), d3([0, 3])}, and Dlist is
{e1(3), e2(3), e3(3)}. The intervals associated with a node is in the brackets following
the node. After preprocessing, the Alist becomes { [0, 4](d3), [0, 1](d1), [0, 0](d2),
[2, 2](d2) }, the Dlist becomes {3(e1, e2, e3)}. Preprocessed Alist and Dlist are sorted
by the codes (intervals and postids, respectively). The nodes corresponding to an
interval i (or postid) is in the bracket following the interval (or the postid). In Alist,
the intervals associated to d2 are separated. In Dlist, since e1, e2, e3 have the same
postid, they are merged.

4.2 Structural join algorithms

After preprocessing, a naïve structural join algorithm can be obtained by generalizing
the sort-merge based structural join algorithm in [1]. One subtlety is that the intervals
in the preprocessed Alist might have the same starting or ending values (i.e., x or y).
The codes shown in Figure 4c are such an example. We present the merge-based join
algorithm on graph, named Graph–Merge–Join (GMJ), in Algorithm 1.

For example, the two lists (preprocessed) to be joined are:

• Alist: a1([1, 3]), a2([1, 1]), a3([4, 6]), a4([4, 5]), a2([8, 8])
• Dlist: d1(1), d2(4), d3(7)

which correspond to a nodes and d nodes in Figure 5.
In GMJ, the basic idea is to join intervals and postids in a sort-merge fashion.

Since intervals might be nested, a bookmark is needed to keep track of the current
position of intervals while outputting results. In the example, the pointer of Alist,
i.e., a, points to a1. d1 joins a1 and a2([1, 1]). When processing d2, the pointer of
Alist moves to a3. d2 joins with a3 and a4. When processing d3, the pointer of Alist is
on a2([8, 8]) with x value larger than the id of d3. The pointer of Dlist is then moves
to the tail without outputting any results. So the algorithm terminates.
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Algorithm 1 GMJ(Alist,Dlist)
1: a = Alist.head()

2: d = Dlist.head()

3: while a �= NULL∧ b �= NULL do
4: while a.x > d.postid ∧ d �= NULL do
5: d = d.next()
6: while a.y < d.postid ∧ a �= NULL do
7: a = a.next()
8: if d �= NULL∧ a �= NULL then
9: bookmark = a

10: while a �= NULL∧ a.x ≤ d.postid do
11: if a.y ≥ d.postid then
12: Append pair (a, d) to the output
13: a = a.next()
14: a = bookmark
15: d = d.next()

GMJ suffers the same problem of tree-merge join algorithms in that part of
the input might be scanned repeatedly. We note that stack-based structural join
algorithm in [1] cannot be directly generalized to work with our coding scheme. This
is because that two intervals may be partially overlapping. For example, a graph and
its codes are shown in Figure 6. The intervals assigned to a3 and a4 are partially
overlapping. As a result, stacks can no longer be used to represent the nesting
relationship between intervals in our coding scheme.

We design a new algorithm, named Improved Graph Merge Join (IGMJ) instead.
The basic idea of IGMJ is to store the intervals that can be joined in a range search
tree (RST for brief). In the tree, the intervals are indexed and organized according
to their y values. When a new interval a of Alist arrives, it is compared with current
node d of Dlist. If a contains the postid of d, a is inserted to the tree and all elements
in RST with y values smaller than a.x are deleted (via the trim() method). Otherwise,
we process current node d in Dlist. All elements in RST with y value smaller than
d.postid are deleted. Then d is outputted with all the a nodes in the tree. The
algorithm of IGMJ is shown in Algorithm 2. In this algorithm, brtree is a RST that
supports the following methods: insert(I) and trim(v). insert(I) will insert an interval

Figure 5 An example of GMJ. r[1,9]

a1[1,3]

t1[1,2]

d1[1,1]

a3[4,6]

a4[4,5]

d2[4,4]

d3[7,7] a2[1,1][8,8]
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Figure 6 An example of
overlapping code.

I to the RST; trim(v) will batch delete the intervals in brtree whose y values smaller
than v.

For example, let’s consider running IGMJ on the same example above. x values
of a1 and a2([1, 1]) are smaller than d1.postid. At first, a1 and a2 are inserted into
the RST. Then, (a1, d1) and (a2, d1) are appended to the result list. a3 and a4 are
processed before d2. They are inserted to RST. When a3 is processed, a2 is trimmed
from the RST because a2.y < a3.x. a1 is trimmed from RST when processing d2,
since a1.y < d2.postid. Then, (a3, d2) and (a4, d2) are appended to the result list. a3
and a4 are trimmed from RST based on d3 then.

5 Subgraph join

In this section, we discuss the processing of subgraph queries. We present subgraph
join algorithm and the method of query preprocessing. Before performing subgraph
join, data is preprocessed in the same way as GMJ.

5.1 Preprocessing for subgraph query

In order to apply subgraph join algorithm to process general subgraph queries, some
preprocessing strategies are applied on the query with circles. If there are some
circles in the query graph, a node n in each circle should be split to na and nb to
break this circle. na includes all the incoming edges of n. nb includes all the outgoing

Algorithm 2 IGMJ(Alist,Dlist)
1: a = Alist.head()

2: d = Dlist.head()

3: while a �= NULL OR d �= NULL do
4: if a.x ≤ d.postid then
5: rstree.trim(a.x)

6: rstree.insert(a)

7: a = a.next()
8: else
9: rstree.trim(d.postid)

10: for all element a in rstree do
11: Append (a, d) pair to the output
12: d = d.next()
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Figure 7 Examples of query
with circles.

d c

ef

a Query with
Circle

c

c

e

d

f

b Converted
Query

edges of n. For a circle, a node with the smallest corresponding nodes in the graph is
chosen to split. It is because the splitting of such node will possibly results in smaller
intermediate results.

When subgraph join is finished, the subgraph in the result with the same nodes
corresponding to split query nodes is considered as the result and the such nodes are
merged.

An example is used to illustrate the processing of subgraph queries with circles.
The query is shown in Figure 7a. After splitting a node c, the query is converted to the
query in Figure 7b. The results for such query on the graph shown in Figure 2b are
(c1, e1, d3, c1, f 1), (c1, e2, d3, c1, f 1), (c1, e2, d3, c1, f 1). Since these three subgraphs
all have the same c nodes corresponding the c nodes in the converted query. They
are all included in the final result. The final result is (c1, e1, d3, f 1), (c1, e2, d3, f 1),
(c1, e2, d3, f 1).

Theorem 3 After connection processing in the last step, the splitting of query node will
not affect the final result of the subgraph query.

Proof In a subgraph query, the incoming edges and outgoing edges of a node n
can be considered as the restrictions to this node. The nodes satisfying all these
restrictions are retrieved. The splitting of the incoming edges and outgoing edges can
be considered as a splitting of these restrictions. The connection of the final result is

Figure 8 An instance of
interval stack.
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to obtain the intersection of the result set of the split query nodes n1 and n2. Since
the results of n1 and n2 are selected from the same node set (nodes with the same
tag), the intersection of these two result sets is to add all restrictions of the two nodes
on this node set. Therefore, it equivalents to the result of the query node n with all
incoming and outgoing edges as restrictions. ��

For the efficiency of the query processing, before the process of the data stated
in Section 4.1, the nodes in the same SCC in each candidate list are merged into one
node. This node is called a stub node. Since the coding of nodes in the same SCC have
same intervals, the coding of the stub node has these intervals; the id of the stub node
is any id of the nodes belonging to the same SCC. The goal of such preprocessing is to
prevent too large intermediate results during query processing without affecting the
final result. For example, to process the query shown in Figure 9, there is a cycle
in graph of the XML document with 100 a nodes, 100 b nodes and 100 c nodes
respectively. Since they are reachable to each other, there will be 106 items in the
intermediate result after processing these nodes.

Corresponding to the merge, after the join is performed, the result should be
extracted. The process of extraction is, for each result with the stub node, from the
node set associated with each merged nodes, one node is selected once to put on the
position of the merged node. With a different combination of the selected nodes, one
result is generated.

Theorem 4 With extraction after all results are generated, the merging of nodes in the
same SCC before query processing will not affect the final result.

Proof The stub node is one of the nodes in the SCC. Since all nodes in the same SCC
reaches same nodes and are reached by same nodes. So if the stub node is changed
to other node in the same SCC with same tag. The result also satisfies the query.

The merging will not affect the results without nodes in any SCC. If there is a node
n in the final result of a query q on the unmerged data belonging to some SCC, there
must be a result in the result of q on the merged data. The position of n is the stub
node of the SCC of n, then after extraction, there must be a result with the position
n. Hence, each result of q on the unmerged data corresponds to one extracted result
of q on the merged data. ��

Figure 9 Example query.
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5.2 Data structure for subgraph join

As mentioned before, there may be overlapping in the intervals. Therefore, the stack-
based join of tree structured XML document cannot be applied to the coding directly.

We design a data structure, interval stack, to support the efficient graph structural
join.

The interval stack is a DAG. Each node represents an interval. Each edge e =
n1 → n2 represents the interval of n1 contains the interval of n2. The child of each
node is sorted by the x values of the intervals.

There are two additional structures of the digraph, top and bottom. Top is the list
of the sinks. Bottom is the list of sources. They are both sorted by x values of the
intervals. An example of interval stack is shown in Figure 8.

There are mainly two operators of interval stack, append and trim. The former is
to append an interval to the interval stack. The latter is to delete useless intervals
from the interval stack. The pseudo code of the implementations of these two opera-
tors are in Algorithm 3 and Algorithm 5, respectively. The function delSubgraph(n)

is to delete the subgraphs in the interval stack with root n.

5.3 Subgraph join algorithms

With the interval stack, we present a join algorithm to support subgraph queries.
We have following observations of the compacted interval list:

• The postid of a node is contained in one and only one of its intervals.
• If two nodes have reachability relationship, it can and only can be checked by

one interval. That is, if a � b , among all the intervals of the reachability coding
of a, only one contain the b .id.

Algorithm 3 append(S,i)
1: if S.top is empty then
2: S.top.addback(i)
3: S.bottom.addback(i)
4: else if i.x > S.bottom.end.y then
5: S.top.clear
6: S.bottom.clear
7: S.top.addback(i)
8: S.bottom.addback(i)
9: else if node.y > S.bottom.end.y then

10: S.top.addback(i)
11: S.bottom.addback(i)
12: else
13: for each interval n in S.bottom do
14: if n.y ≤ i.x then
15: insert(i, n)
16: S.top.addback(i);
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Algorithm 4 insert(i,n)
1: if i.x ≤ n.x and n.y ≤ i.y then
2: if n is not accessed then
3: b= false
4: for each child c of n do
5: if insert(i,c) = true then
6: b =true
7: if b =false then
8: n.child.addback(i)
9: if n is in S.top then

10: S.top.delete(n)
11: return true
12: else
13: return false

After preprocessing, the input query is visualized as a rooted DAG. Because the
circle in the input query are broken in preprocess. If there is no root, a dummy root
is added to the query.

The join candidates are a series of intervals with a list of nodes it corresponds to.
For each node in the query graph, a structure is built which includes an interval

stack (S) and its current cursor (C), the pointers to its parents and children in the
query graph. The interval stack is described in Section 5.2. M is a hash map, mapping
postid of node to its children. The algorithms of subgraph join are described in
Algorithm 6.

The subgraph join algorithm has two phases. In the first phase, all pairs of nodes
satisfying partial reachability relation described in the query are outputted. In the
second phase, the nodes in the intermediate result unsatisfied the whole query are
trimmed. That such nodes are possibly included in the intermediate result is because
in the first phase, when each pair of nodes is outputted, only partial reachability
relation related to these two node is considered. For example, for the query shown
in Figure 9, some of the intervals to process are shown in Figure 10, the ids in
brackets are the postids corresponding to the interval. Suppose the first number in
the brackets is in corresponding interval and others is not in the interval. During

Algorithm 5 trim(S,i)
1: for each node n in S.bottom do
2: if n.y < i.x then
3: delSubgraph(n)
4: for each node n in S.top do
5: if n.y < i.x then
6: top.delete(n)
7: if n has parents then
8: for each parent p of n do
9: if p has no child other than n then

10: top.insert(p)
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Algorithm 6 GJoin(root)
1: while not end(root) do
2: q = getNext(root)
3: if not isSource(q) then
4: if isSource(q) OR not emptyParent(q) then
5: cleanNodes(q)
6: push(q)
7: advance(q)
8: obtainResult()

1: function end(q)
2: return ∀qi : isSink(qi) ⇒ end(qi.C)

1: procedure clearNodes(q)
2: q.S.Trim(q.C)

1: function emptyParent(q)
2: return ∃pi ∈ qi.parents : pi.C = pi.end

1: procedure push(q)
2: for each node n ∈ q.C.context do
3: if q = root then
4: q.extent.add(n)

5: if n.id > q.C.y then
6: insertEntry(q.M, n)
7: n.type = q
8: else if n.id ≥ q.C.x then
9: for each p ∈ q.parents do

10: pointTo(p,q,n.id)

1: procedure pointTo(p,q,id)
2: for each entry i ∈ p.S do
3: if id ≥ i.x AND id ≤ i.y then
4: for each node n ∈ i.context do
5: M[n.id].child.add(id)

1: procedure obtainResult
2: for each node n ∈ root.extent do
3: b = generateResult(n)

4: if b = F ALSE then
5: delete n from root.extent

query processing, although a31 and c21 are not in the final result, the pair (a31, c21) is
still outputted.

During the processing of the query in Figure 9, a1 contains c1. Based on Obser-
vation 1, only pairs (a11, c11), (a12, c11), (a13, c11) are appended to the intermediate
result. This is because from the containment of these two intervals, only that c11 is
contained in a1 can be determined. Therefore, only the reachability of all nodes in
the extent of a1 and c11 is true.
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1: function generateResult(node)
2: if node is visited then
3: return node.isresult
4: b = TRUE
5: for each child c of node do
6: tb = generateResult(c)
7: if tb = FALSE then
8: delete c from node.child
9: b = FALSE

10: else if NOT c.type ∈ node.childtype then
11: node.childtype.add(c.type)
12: if node.childtype.size = node.type.child.size then
13: node.isresult = T RU E
14: return TRUE
15: else
16: node.isresult = F ALSE
17: return FALSE

getNext() is to find the next entry to process. It has similar function as getNext
of twigjoin in [3]. First of all, the interval with the least x value is chosen. If some
intervals have the same x value, the interval with the largest y is chosen. If two
intervals have the same x and the same y and their corresponding query nodes have
reachability relationship, the interval corresponding to the query node as ancestor
is chosen. Otherwise, some result will be lost. For example, the query in Figure 9 is
considered. On the element sets visualized in Figure 10, the interval a1 has the same
x and y as interval b 1. The nodes in the interval of b 1 corresponding to a1 should
be outputted with the nodes corresponding to b 1. But if b 1 is chosen former than a1,
these pairs will not be outputted. Since a1 contains b 2, the nodes corresponding to a1

should be outputted with the nodes corresponding to b 2. But if b 2 is chosen at first,
these pairs will be lost.

Figure 10 Element sets for
Figure 9.
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Algorithm 7 getNext(q)
1: function getNext(q)
2: if isSink(q) then
3: return q
4: for qi ∈ q.children do
5: ni = getNext(qi)

6: if ni.lef t < nmin.lef t then
7: nmin = ni
8: else if ni.lef t = nmin.lef t then
9: if ni.right > nmin.right then

10: nmin = ni
11: else if ni.right = nmin.right AND ni is a ancestor of nmin then
12: nmin = ni
13: nmax = maxargni {ni.C.x}
14: while qi.C.y < qmax.C.y do
15: advance(qi.C)
16: if qi.C.x ≤ qmin.C.x AND qi.C.y ≥ qmin.c.y then
17: return q
18: else
19: return nmin

Note that the function emptyParent() is to check whether the nodes in current
interval satisfies the restriction of all incoming paths in the query. In our example,
when interval c3 is met, since interval stack of b is empty, c3 will not be considered.

Outputted pairs are organized by the ancestors. The main memory may be not
enough to store intermediate results. External memory is used to store intermediate
results. Since each node may have more than one descendant during query process-
ing, children of one node are stored as a list in disk. The head of the list associated
with a node record the number of the node, the query node corresponding to the
node and the pointer to the first entry of the list. Each of entries in the list includes a
pair (node, next), where node is the pointer to the node this entry corresponding to
and next is the pointer to next entry of the list.

Theorem 5 The logical I/O number of the subgraph join algorithm is linear to the
number to the pair of nodes satisfying the reachability relationship described in the
query.

Proof In the first phase, the nodes and the pairs are appended to disk when the
condition is satisfied. When each node is first met, it will be added to the intermediate
result. When a pair of nodes (n1, n2) satisfies a reachability relationship described in
query, this pair is added to the intermediate result. The adding method is to link n2’s
position to n1’s child link. For adding each pair, twice logical I/O are required, one
for appending pointer to the intermediate result, the other for filling back the address
to the original tail of the child list of n1. The logical I/O in this step is N + 2M where
N is the number of nodes in the disk and M the number pairs of nodes satisfying the
reachability relationship described in the query.
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After the first phase, the intermediate result in the disk can be considered as a
graph. The second phase is to scan the graph once. The number of edges in this
graph equals to the number of pairs of nodes satisfying the reachability relationship
described in the query. This step requires N + M times logical I/O.

The total number of logical I/O is 2N + 3M. This is linear to M, the number of the
pairs of nodes satisfying the reachability relationship described in the query. ��

Discussion of processing subgraph query with adjacent edges Subgraph queries
with adjacent edges can be processed with the method similar to that discussed in
this section. Each node is given a adjacent code. The generation of adjacent code is
that for each node with postid i, interval [i,i] is assigned to each of its parents. The
benefit of such coding is that the judgement of adjacent relationship is the same as
that of reachability relationship so that the method in this session can be applied
to the subgraph query with adjacent edges. Note that if one query node has both
reachability and adjacent outgoing edges, this node should be split into two query
nodes with only reachability and adjacent outgoing edges, respectively. It is because
different intervals are to be used to judge reachability and adjacent relationship. The
incoming edges are not split. It is because the judgements of reachability and adjacent
relationships use the same set of postids.

6 Experiments

In this section, we present results and analysis of part of our extensive experiments
of the new labelling scheme and the algorithms presented in this paper.

6.1 Experimental setup

All our experiments were performed on a PC with Pentium 1GHz CPU, 256M
main memory and 30G IDE hard disk. The OS is Windows 2000 Professional.
We implemented the encoding of graph, the Graph–Merge–Join (GMJ), Improved-
Graph–Merge–Join (IGMJ) and subgraph join algorithm using the file system as
the storage engine. For comparison, we also implemented a traversal-based query
processing algorithm based on the 1-index [16] (1-index) and F&B index [14] for
graph-structured XML document. F&B index supports all the subgraph queries for
XML. We also implement GRIPP [22], the latest reachability labelling scheme and
reachability query processing method based on it, the best subgraph query processing
algorithm , StackD [5], as well. We use LRU policy for buffer replacement.

We use the XMark benchmark dataset [19] in our experiments. It is a frequently
used dataset with irregular schema. We measure the performance of different algo-
rithms on the 20M XMark dataset (with scale factor 0.2). It has 351,241 nodes and
its 1-index has 161,679 nodes. We generated other XMark datasets with sizes 10M,
20M, 30M, 40M, and 50M respectively. They are used in the scalability experiment.

We show the set of reachability queries used in the experiments in Table 1. They
represent different characteristics in terms of the sizes of Alist, Dlist, and result
(based on the 20M XMark dataset).
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Table 1 The query set.

ID Query Alist size Dlist size Result size

Q1 person�emph 3,158 14,222 8,032
Q2 site�item 1 4,549 4,350
Q3 person�category 3,158 200 199
Q4 people�privacy 205 1,195 1,182

In order to better test and understand the characteristics of the subgraph join
algorithm, we designed three queries with different characteristics. The query graph
of them are shown in Figure 11a, b, c, respectively.

6.2 Space overhead of the coding

We measure the space overhead of our labelling scheme with the following two
parameters:

I PN = number of total intervals
number of nodes in the XML document

I PN J = number of total intervals after preprocessing
number of nodes in the XML document

The former measurement represents the average number of intervals associated
to one node. The latter measurement represents the average number of intervals
associated with one node to be processed during structural join.

The results of the size of codes are shown in Table 2, where IAP means the number
of total intervals after preprocessing. IPNJ is smaller than 1.0. This is because some
nodes in the interval sets may share the same interval. It can be observed from the
result that even though the average number of intervals of a node is larger than one,
the average number of intervals after preprocessing are smaller. This shows that the
preprocessing of the Alist and Dlist in the join is meaningful by exploiting the sharing
of intervals and postids, respectively.

We compare the coding presented in this paper with GRIPP [22]. The numbers of
intervals and ids in GRIPP are shown in columns of GRINT and GRID, respectively.
From the comparison result, even though the number of intervals in GRIPP is smaller
than that of the labelling scheme in this paper, the number of intervals of GRIPP is
larger than that of the intervals after preprocessing. It means that after preprocessing
the space overhead of our labelling scheme is smaller than that of GRIPP.

Figure 11 Test queries.

a GSQ1 b GSQ2 c GSQ3
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Table 2 The size of code.

Doc Size Intervals IAP IPN IPNJ GRINT GRID

11.3M 252,284 173,702 1.44 0.990 200,105 169,357
22.8M 503,112 346,014 1.43 0.985 401,061 339,191
34.0M 746,234 516,546 1.40 0.985 598,154 505,992
45.3M 999,784 687,596 1.43 0.986 796,338 673,421
56.2M 1,255,877 859,823 1.44 0.988 993,948 840,503

6.3 Efficiency of structural join

6.3.1 Execution time

We show in Figure 12 the execution time of IGMJ, GRIPP-based method and
1-index for Q1 to Q4 on the 20M XMark dataset. Note that Y-axis is in logarithm
scale. IGMJ outperforms other two methods. This is because there are many nodes
in 1-index. During processing the query with form ’a//b’, when a node a1 with tag a
is found, all the nodes in the subgraph formed with nodes that are reachable from a1

need to be traversed. For the same reason, GRIPP-based method accesses the codes
for many nodes while IGMJ only accesses the codes of the nodes with the labels in
the query.

6.3.2 Scalability experiment

To evaluate the scalability of the algorithms, We ran Q1 on XMark documents with
size ranging from 10M to 50M. The result is shown in Figure 13a. It can be seen that
both algorithms scale linearly with the increment of the data size.

From the result, we also found that IGMJ is always faster than GMJ. It is because
with the usage of RST, whenever an interval will not join with any d in the Dlist, it
will be trimmed from the RST.

Figure 12 Comparisons of
IGMJ.
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Figure 13 Experiment results of comparisons.

6.4 Efficiency of subgraph join

6.4.1 Changing system parameters

In this subsection, we investigate the performance of our system by varying various
system parameters. We use physical I/O and run time to reflect the impact of different
parameter setting.

Scalability experiment We test the queries on XML documents with various sizes.
In order to test the scalability of the subgraph join algorithm. We choose SGQ2 and
SGQ3 as test queries. We fix main memory 8M and block size 4096. The results are
shown in Figure 13b and c, respectively. SGQ1 is a simple twig query. The nodes
related to SGQ1 in XML document are not in any SCC and all have a single parent.
Therefore, the increasing trend is nearly linear. SGQ2 is a complex subgraph query.
One person node may be reached by more than one seller nodes and only parts of
person nodes are reached by both seller node and buyer node. The trend of run time
is faster than linear but still slower than square.

Varying buffer size The physical I/O change with the block number of SGQ1 is
shown in Figure 13d. From the Figure 13d, we can find that without enough main
memory, the second phase result in more physical I/O than the first phase. This is
because in the second phase the whole intermediate result is traversed while in the
first phase, the operation is mainly appending.
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Figure 14 Comparisons for
SGJ.

6.4.2 Comparison experiment

We do comparison on 10M XML document with F&B-index 167,072 nodes. We
implemented the depth first traversal-based query processing by F&B-index. The
reason why we do not compare larger XML document is that when XML document
gets larger, the query processing in F&B-index becomes too slow. We also compare
our algorithms with StackD.

The result of comparisons is shown in Figure 14. Y axis is in log scale. subgraph
join algorithm outperforms the efficiency of F&B index. For SGQ1, the efficiency
are similar. It is because the nodes in XML document related to SGQ1 is in tree
structured in Xmark document and the search depth in F&B index is limited. From
the result, our algorithm outperforms StackD. It is because that for the subgraph
queries, StackD requires large intermediate results and when the form of query is a
DAG, additional join operations are required.

7 Related work

There are two kinds of work related to the work in this paper. One is reachability
labelling scheme. The other is labelling-scheme-based structural query processing
techniques.

Many reachability labelling schemes of DAG have been presented, including
[9, 11, 17] and [6]. Vassilis Christophides and Plexousakis [23] presents a survey
of labelling schemes on DAG and compare the labelling schemes on the coding of
semantic web.

A two-hop reachability label are presented in [9]. Ralf Schenkel and Theobald
[18] uses two-hop label to process the reachability query in complex XML document
collections. An approximate algorithm for the computation of two-hop labelling
by finding densest subgraphs is presented in [6]. He et al. [11] presents HLSS
labelling. This labelling strategy obtains (preorder, postorder) for each node and
then computes two-hop labelling on remaining edges. Similar as [11], the labelling
scheme presented in [24] obtains (preorder, postorder) for each node at first and
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then compute transmit closure matrix for remaining edges. With preorder and
postorder, such matrix can be reduced. GRIPP [22] is the latest labelling scheme
for reachability relationship. Such labelling scheme converts a graph into a tree
with duplication nodes with multiple incoming edges as leaves and using reachability
labelling scheme of tree to encode such tree. The labelling scheme and algorithms in
this paper are based on the labelling scheme in [17]. It is because such scheme avoids
costly set comparison and matrix looking up and is suitable for the computation
of (ancestors, descendent) pairs from two node sets. Additionally, such labelling
scheme is compatible with adjacent labelling scheme so that it is also suitable to
process subgraph queries with both adjacent and reachability relationships. Some
XML compression storage strategies are surveyed in [25], the tree structure is also a
required feature for these methods. So these strategies cannot be applied on graph-
structured the storage of XML data.

With efficient coding, XML queries can also be evaluated using the join-based
approaches. Structural join is such an operator and its efficient evaluation algorithms
have been extensively studied in [1, 7, 10, 12, 15, 25, 26, 28]. They are all based on
coding schemes that enable efficiently checking of structural relationship of any two
nodes in a tree, and thus cannot be applied to the graph-structural XML data directly.
There are some path-based indices structures for XML data [27]. These indices are
based on tree structure and not suitable for graph-structured XML data.

A few methods have been proposed to process some kinds of subgraph queries on
XML data in form some of special kinds of graphs. Chen et al. [5] presents a method,
called StackD, to process twig queries on DAG-structured data. It is a modification
of a holistic TwigJoin based method. However, StackD focuses on tree-structured
twig queries and is not suitable for queries in form of complex graphs. Additionally,
when there are many edges in the graph, StackD should maintain a very large data
structure. In the case, very huge main memory space is required. It is not practical
and becomes inefficient. We choose StackD for comparison. Zografoula Vagena and
Moura Moro [29] presents an other method, which is also a modification of the
holistic TwigJoin based method, to process twig query on graph-structured data.
However, it only works on a kind of special graph, i.e. st-planar graphs [13], but
not suitable for other graphs. XQBE [2] is a graphical environment to query XML
Data with XQuery. It uses graph mode to represent the query. However, the data
of the queries for XQBE is not graph-structured XML data. This method cannot be
applied to graph-structured XML data directly. In summary, current methods cannot
process general subgraph queries effectively or efficiently.

8 Conclusions

In this paper, we presented a labeling scheme for graph-structured XML data. With
such labelling scheme, the reachability relationship between two nodes in a graph can
be judged efficiently. Based on the labeling scheme, we designed efficient structural
join algorithms for graph-structured XML, GMJ, IGMJ and subgraph join. Our
experiments showed that the labeling scheme has acceptable size while the proposed
algorithms outperform previous algorithms significantly. As one of our future work,
we will design efficient index structure for the labeling scheme to accelerate query
processing.
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