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Abstract ject distances in Euclidian spaces. Fotanstraint-based

k-NN query, the distance between two points can only be
calculated from their coordinates as well as some physical
environment data. Such queries can be found in many appli-

A k-NN query finds thé nearest-neighbors of a given
point from a point database. When it is sufficient to mea-
sure object distance using the Euclidian distance, the keycations where the distance is only meaningful when objects
to efficientk-NN query processing is to fetch and check the

: o . can be physically moved from the source to the destination,
distances of a minimum number of points from the database. :
L . such as vehicle movement along a road network, rover and
For many applications, such as vehicle movement along

. . Yanimal movement along the surface of a terrain. The focus
road networks or rover and animal movement along terrain . o S
. . . e of constraint-freg&-NN query processing is to minimize the
surfaces, the distance is only meaningful when it is along

a valid movement path. For this type loNN queries, the number of points irD, \.Nh'Ch 'S typm_a}ly_very large, to be
L L0 L fetched and checked, in order to minimise the 1/O cost, and
focus of efficient query processing is to minimize the cost. ; . .
. . ; ! in the cases of high dimensional databases or when a com-
of computing distances using the environment data (such as

the road network data and the terrain data), which can be plex d|sta_nce function is used, the C.P.U cos_t as well. For
: .~ a constraint-baset-NN query, key efficiency issues to be
several orders of magnitude larger than that of the point

. . . considered are quite different. We have both ¢mgiron-
data. Efficient processing df-NN queries based on the . : :
- . ! mentdata ancbbjectdata, and the size of environment data
Euclidian distance or the road network distance has been

: . ) : . . can be several orders of magnitude larger than that of object
investigated extensively in the past. In this paper, we inves- . o .
. . dataseD, and the distance between two points is typically
tigate the problem of surfadeNN query processing, where : O

: . calculated from a valid shortest path. The cost of finding the
the distance is calculated from the shortest path along a . .

. . . : shortest path in the environment can be very costly (for both
terrain surface. This problem is very challenging, as the S X

. . I/O and CPU costs). A further complexity is the explorative
terrain data can be very large and the computational cost

of finding shortest paths is very high. We propose an effi- nature ofk-NN query processing, which means the search
. ; . ’ . space for a query is much larger than the size of the final
cient solution based on multiresolution terrain models. Our

approach eliminates the need of costly process of findingreSUItS’ implying much higher overall CPU and I/O costs.

shortest paths by ranking objects using estimated lower and Efficient processing O%NN quenes |n'Iarge' spatial
: . . . databases has been investigated extensively in the past,
upper bounds of distance on multiresolution terrain models.

mainly for constraint-freé:-NN queries (using the Euclid-
ian distance) [16, 17]. Constraint-baskdNN query pro-
cessing, concerning spatial networks such as road networks,

1. Introduction has been studied recently [12, 15]. In this paper, we investi-
For a given set of point dat®, a distance functiom gate a new type of constraint-bagediN queries concern-
and a query poing, a k-NN query findsS C D such ing moving objects on the surface of a terrain. We call this

that |S| = k and for anyp € S andp’ € D — S, type of query surfacé-NN query k-NN query). We are
d(q,p) < d(q,p’). We distinguish two types of spatia} motivated by environment protection applications, where

NN queries. For @onstraint-freek-NN query, the distance spatial analytical queries are used to identify animal group-
between two points can be calculated by using only their co-ings and their inhabitation areas (shapes and positions), re-
ordinates (e.g., using the Euclidian distance function). This lationships with the environment (their nearest foraging and
type of k-NN query processing are useful for multimedia water sources and human settlement activities) and migra-
databases where such a distance function is used to measut®n trends. Surface distances are used for grouping fauna
object similarity, and for some geographical information and flora location data, angk-NN queries are performed
systems where it is sufficient to measure or approximate ob-frequently for clustering new sightings(according to their



surface distances to existing groups), validating existing to higher-than-original resolution (for surface shortest dis-
groupings once new location data becomes available, estance calculation). It can also be used to estimate the upper
timating maximum migration speed (using the shortest sur-bound of shortest distance at a particular resolution. An-
face distance), and predicting areas of potential sightingsother data structure, MSDN, contains a set of support dis-
and relationships with other types of animals and vegeta-tance networks (SDN) at different resolution levels. An
tion. SDN consists of the selected points from the original sur-
Technical motivations for this research include follows. face model, and is used to estimate the lower bound of the
First, many methods proposed for traditiodaNN query shortest distance at a given resolution. Using DMTM and
processing algorithms are not applicablesteNN query MSDN, a novelsk-NN query processing algorithm called
processing. Digital surface mod&lsan consist of millions ~ MR3 (Multi-Resolution Range Ranking) is proposed using
of points for an area of interest, so those techniques usedhe filter-and-refine optimization strategy. Our experiments
for organizing spatial objects to optimize 1/O costs are not using real terrain data show that MR3 approach outperforms
effective here without a careful consideration of the under- the benchmark algorithm by nearly an order of magnitude
lying terrain model. Second, simple extensions to the tra-in all cases.
ditional k-NN query processing methods to limit the search ~ The remainder of this paper is organized as follows. Fol-
area where the terrain data needs to be fetched, such as ugwing a review of related work in Section 2, we propose
ing Euclidian distances to prune the search space, is difficult DPMTM and MSDN data structures in Section 3 and algo-
to use and can be very inefficient. We found that the ratio of rithm MR3 in Section 4. A comprehensive empirical per-
the surface distance over Euclidian distance can vary fromformance study is reported in Section 5. We conclude this
200-300% times for rugged mountain areas, to just 20-40%paper and briefly discuss future directions in Section 6.
for some other areas. This could lead to using an unnecess  paiated Work
sarily large area for some cases, or repeated search area en-
largement (and shortest path calculations) for others. Third, . )
the cost of finding surface shortest path is extremely high. the_areas Ok'NN query processing, surfe_xce distance com-
For some moderately large areas (a few square kilometres)f)Utlng and multlresoluthn terrain modelling. . . .
k-NN query processing has been extensively investi-

the most efficient surface shortest distance algorithms [1] ted in Euclid d tial networks 16. 12
can take tens of minutes on a modern PC machine to find the‘ig1 e18|n léc.' eha}nhspzijc;es an slpa al ne v;orzi [ ,Th '
shortest distance between one pair of points on the surface; ™’ 1. and in higher dimensional spaces [8, 21]. €

and one of the most efficient approximate surface shortestconStra'nt'freéC'NN query processing focus on minimizing

distance algorithms [9] still takes several minutes. Note that the number of object data accessed. Typically, a hierarchi-

distance calculation is a fundamental and frequent operationCal spatial index (.SUCh as the.R-tree) IS u_sed to prune the
in any k-NN query processing search space by either depth-first or best-first traversal, with

In this paper. we approach the problem of efficiekt the former only visits the index entries with distance smaller
paper, e app P R : than the visited:** NN [16] while the latter only visits en-
NN query processing from two angles: using a multires-

. : - . C}ries with the smallest distance of all visited [6]. In high
olution terrain model such that estimated distances based,. . .
. . -~ dimensional spaces, the VA-file based®NN query process-
on lower resolution data can be used as a guide to restrlctI [21] proposes to use a distance ranking method. This
areas where high resolution data is needed, and using fast'9 prop 9 .

i . : o method uses approximation data to estimate lower bound
algorithms for distance ranking by considering lower and : .
. ) . . b) and upper boundup) of the distances from all objects
upper bounds instead of using accurate distances obtained . :
. . eing approximated to the query point Let the (k + 1)
from costly shortest surface distance calculation. The com- .
. . : nearest neighbors gfbe{p1,ps ..., px, pr+1}. The search
bined advantage is that-NN query processing can of- . : : )
. - terminates ifub(pr) < lb(pr+1). Otherwise, a refinement
ten be completed by accessing and processing the data at g . ; : .
. : ) using accurate object data is required.
just-enougtievel of Details (LOD) from gust-enougiRe- One tvpe of constrained-NN querv. networki-NN
gion of Interest (ROI) without computing surface shortest yp query,

paths. To facilitate these, we propose two novel data struc- 24, has received some attention re_cently [12, 15, 18],
. . : A . Although a surface mesh can be considered as a network,
tures built on the original terrain model: Distance Multires-

olution Mesh (DMTM) and Multi-solution Support Dis- the existing networks-NN t.echnlques can not be directly
. . . . used to processk-NN queries, because the surface model,
tance Network (MSDN). DMTM is a multiresolution tri- . :
L : . if regarded as a network, is a much more complex network
angular mesh with distance information. It can be used to 9
. - . than road networks. For examplé;&~ surface model may
derive a surface model from lower-than-original resolution

(for those applications that do not need high resolutions) ggc;?lgo?£££0 segments and a normal surface model can

1in this paper, the item surface, surface model, surface mesh and terrain ~ F1Om a set of t_errain data points (e.g. surface elevati_on
model are used interchangeably. samples), a terrain model can be constructed by applying

In this section, we briefly introduce the related work in
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: recent study [2] proposes an accurate surface shortest path
Figure 1. Terrain with different resolutions algorithm such that the problem of finding the shortest path

a surface triangulation algorithm. The high resolution ter- P&tween two points can be completed in a local region, in-
rain is usually very large (containing millions of vertices) stead of checking the entire surface as other algorithms do.

such that it is gpprogimated with max_imu.m similarity at 3 Data Structures
a lower resolution tailored for an application (see [4] for
a survey). Fig. 1 shows two terrain models with differ-
ent resolutions with different number of triangles. One of
the main challenges of multiresolution database indexing
is to efficiently retrieve terrain data with just-enough LOD
from a just-enough ROI according to application require-
ments. Progressive Meshes (PM) [7] is a representative o
such a multiresolution terrain model, where the data at any
required LOD and ROI can be derived on-the-fly from a
single set of terrain data stored in the database following
a tree structure progressively. Direct Mesh (DM) [22] im-
proves query processing performance using PM by allow-
ing partially materialized surface information using a low-
overhead connectivity-encoding scheme. As a result, DM 3.1 Distance Ranking
does not need to fetch all internal nodes from the root of  The key idea of our approach is to use an MTM such that
the mesh tree in order to obtain the connectivity informa- the surface distance can be estimated efficiently at an as low
tion. The existing multiresolution terrain models are de- as possible LOD. For any two poinisandb on a terrain sur-
signed only for the purpose of visualization and contain no face,ds(a,b) is estimated at resolution as!b,.(a,b) and
distance information. They are not capable to support effi- ub,.(a,b) such that the conditioi,.(a,b) < ds(a,b) <
cientsk-NN query processing. ub,-(a,b) is held. Clearly,sk-NN query processing can
Computing the shortest path on a polyhedral surface rep-sometimes be done by only using the estimated distance
resented by a triangular mesh is a well-studied problem bounds, without using computationally very expensive sur-
(see [14] for a survey). The Chen and Han algorithm [1] face shortest distance algorithms. In Fig.a2p, ¢ andd
computes exact surface distance(rn?) time, wheren are candidates and the underlying line segments are their
is the number of points in the surface model. This algo- distance ranges. Such distance range estimation is suffi-
rithm, however, is not feasible for large and high-resolution cient for answering &-NN query from query poing where
terrain surfaces [2]. Further, it is not easy to extend this al- £ > 2. However, this set of estimated distance ranges is not
gorithm to use multiresolution terrain models (e.g., [5]) be- sufficient fork = 1 query, as the estimated distance ranges
cause surface distances do not change in a monotonic manfrom ¢ to « andb overlap. In this case, the actual distance
ner (i.e., when the exact distance on a low resolution sur-ds(g,a) andds(g, b) may need to be computed, using the
face model is computed by the Chen and Han algorithm, it highest LOD data for accurate surface distance computing
doesn’t guarantee that the distance between the same pair dthis is often called theefinemenstep, referring the previ-
points computed using a higher resolution data alivays ous step of distance estimation as fHtering step which
be longer or shorter, thus the search cannot be terminatedtan typically be done very efficiently). We argue that, us-
using low resolution data). There are several approximateing an MTM, it is often sufficient to go to the next LOD,
algorithms [9, 20]. The Kanai and Suzuki algorithm [9] instead of the highest LOD, to refine distance range estima-
is popular due to its simplicity and efficiency. A so-called tion. To support this, an MTM must support fast distance
pathnet which is created by inserting Steiner points into range estimation, as well as allow progressive improvement
the original surface model, is used. For two given vertices, of the accuracy of estimated distance ranges when data with
the shortest path search operation is performed repeatediya higher LOD is used. For this reason, while some network-
on thepathnetwith increasing level of resolutions in a se- based shortest distance algorithms can be used to estimate
lectively refined region until reaching the required accuracy. the upper bound and the Euclidian distance (in either 2D or
This algorithm enjoys a high level of accuracy in practice. A 3D) can always be used as a lower bound, they do not sat-

We usedy anddg to denote network distance and Eu-
clidian distance respectively. Theetwork distances the
length of the shortest network path (along edges) between
two vertices on a given network (i.e., the surface model
in this paper). Thesurface distancedenoted aslig, is
fthe length of the shortest surface path on a surface model,
where a path is not confined to along edges (i.e., it can cut
through a triangle). Note that for approximation-based sur-
face shortest path algorithms (e.g., [9, 2@]3, is approx-
imated byd, which is computed from a sufficiently high
resolution surface model (by inserting a sufficient number
of Steiner points into the original surface model).



criginal surface model per, approximation error, resolution and LOD are used in-

w WA W v vis terchangeably (a higher LOD means a high resolution and
VAY} Lo \\ smaller approximation error).

>

vs va Vs va vio " The process of reconstructing a surface mesh for a given
” LOD and ROI is a top-down process. It starts from the
D D s >\ root and expands following the tree until the required LOD
vio Yo Vi VIOV Vv Ve s vi v and ROI conditions are met. Unlike other MTM methods

(a) (b) such as PM [7], DM implements a compact connectivity-

encoding scheme, to let each nadeecord a list of iden-
tities (IDs) of the nodes to which may connect and they
isfy the property of continuous improvement (i.e., the dis- have asimilar LOD. Two nodes are said to have a similar
tance computed using a shortest distance algorithm may not. OD if their LOD intervals overlap; the LOD interval of
monotonically decrease when higher LOD data is used; andnodev is [v.children.e,v.parent.e), wherev.parent.e is
for the Euclidian distance, it does not change with LOD). In the approximation error afs parent node and.children.e
this section, we propose two new data structures, DMTM js the maximum approximate error afs two children
and MSDN, to support fast and monotonic distance rangeénodes. This connectivity encoding scheme used in DM
estimation. abolishes the need of level-by-level tree expansion starting
3.2 Distance Multiresolution Mesh from the root of an MTM tree (in order to obtain connectiv-

. . . . . ity information among the nodes), and the concept of sim-
DMTM is a multiresolution terrain model from which y g ) P

. _ilar LOD is used to limit the number of nodes to which a
an approximate surface model can be constructed at vari-

: . : g . node needs to record connectivity information.
able resolutions. Essentially, it contain®atance Direct Y

s . DM is designed for terrain visualization. It does not sup-
Mesh(DDM) whm_h IMproves D_|rect Me_sh (DM) [22] by port fast distance estimation, nor to guarantee monotonic
selectively recording distance information, plupahnet

which is obtained by inserting Steiner points into the orig- change when distances are computed at different LOD.
inal surface model (as in [9]). DDM and thmthnetare DDM can support both of them, by adding distance infor-

e X - . mation to each edge based on the same DM connectivity-
unified into a single tree structure, containing nodes which 9 Y

o ) . encoding scheme. A distance value is recorded during DM
form the original terrain mesh, as well as nodes representlngtree construction. When andb are both leaf nodes (i.e

vertices at resolutions bof[h higher and 'OV_VeT than the origi- from the original mesh) and connected with each other, the
nal LOD. Those nodes with lower-than-original LOD form length of the edge betweenandb in the original mesh is
teh;iragtl;g’nv.vgﬁg It?wg:gdv:ict)hsﬁipphoe:: ?rrlg?]rifi&i\;eari%e[; tf)g:Jr:d used as the distance between them and is recorded in both
the pathne,twhich is used to sg,]upport apprgximate surface nngw andb, and each node’ﬁapresentatwe .nodm the
original mesh, of course, is itself. Every node in DDM has a

distance _computmg. . _ , _ representative node in the original mesh. The importance of
) DDM is built on DM by mtrodupmg distance informa- this property will be discussed later. L&t(v) be the set of
tion. It follows the DM’s construction process and connec- neighboring nodes of node(i.e., to these nodesneeds to
tivity'encoding scheme to efficiently derive an approximate record connectivity information in DM). When nodesnd
terrain model of any ROI and LOD. .We refer the reader t.o b are selected by the DM construction algorithm to collapse
[22] for the process of DM construction and DM-based (vi- into ¢, N(c) = N(a) U N(b) (same as the DM construc-
sualization) query processing, but give a brief introduction tion algorithm). The representative node-a$ set to be the

below to make this paper self-contained. In DM, the terrain representative node of eitheror b (say,a). For each node
data is organized into a binary tree, see Fig. 3(b). All the w e N(c), d(c, w) is defined as:

leaf nodes form the original terrain mesh, and each non-leaf d(a, w) if w € N(a)
node represents a lower resolution approximation of its de-  d(c, w) = { ' )

scendar?ts. DM construction is a bot?(?m-up process. Each () d(b,w) + d(a,b) if w € N(b) — N(a)

vertex in the original terrain mesh is represented by a leaf The second part of DMTM is pathnet which is cre-
node. Then, a pair of connected nodes are selected to colated by inserting Steiner points into the edges of the orig-
lapse to form their parent node if the resultant terrain after inal surface model. This is a common technique used by
the merger causes minimum approximation error accordingapproximate surface shortest path algorithms (e.g., [9, 20]).
to some error measure (e.g., the quadric error matrices [5]).The network in Fig. 4(a) is the part of the original surface
Such approximation erreris recorded with every non-leaf model, and Steiner points split the edges shown in Fig. 4(b).
node. For example, nodes and v, collapse intovgy in The links among these points and the original vertices in
Fig. 3. This process continues until a tree is formed (so the same triangular facet create new edges in the original
the entire terrain is approximated by one point). In this pa- surface model shown as the dashed lines in Fig. 4ath-

Figure 3. An example of MTM tree



path at LODy’, including that shortest path found at LOD
r, impliesub,(a,b) > ub, (a,b). When the resolution level
increases over the original surface resolution, this property
can be proved in a similar way.

3.3 Multiresolution Support Distance Network
MSDN, inspired by the plane-sweep algorithm, is de-
signed to support fast and progressively improvable lower
Figure 4. (a) Original surface model (b) Pathnet bound estimation. It consists of a set of Support Distance
Networks (SDN) at different resolutions.
We explain the intuition behind SDN first. While
dr(a,b) can be used as a safe lower boundigfa, b), it
is not tight and its accuracy cannot be improved by using

(@) (b)

netprovides passageways crossing the inside of the triangu-
lar facet, which are not traversable before. If more Steiner
points are inserted, the network distance can approach the

exact surface distance to a very high level of accuracy. Morehlgher LOD environment data. Consider a terrain in 3D

details of this method can be found in [9, 20]. . .
. space, where the-axis represents the height. Assume that
Assumlng.that bqth DM a'nd pathne’Fare necessary to a.y < b.y. Using a 2D plang = o, a.y < yo < b.y, to
support multiresolution fcerraln appl|c§\t|ons, t_he ext_ra stor- .t though the terrain, a polyline(called acrossing ling
age overhead of DMTM is very small (just adding a distance ¢4 pe obtained by intersecting the plane with the terrain
value to each stored edge in DM). surface. Then, any surface path franto b must pasd
Next, we will discuss how to use DMTM to estimate dis- at least once. For point on [, if dg(a,p) + dg(p,b) <
tance upper bound, and demonstrate that the upper boundg (a,p’) + dg(p’,b) for any other pointp’ on I, then
es_timate(_j using DMTM can be improved monqtonically dg(a,p)+dg(p,b) is a better lower bound afs(a, b). The
with the increase of LOD. A surface approximation for a accuracy ofb estimated in this way can be improved when
given LOD and ROI can be derived from DDM, just as in  morey-planes are used. Clearlyaplane is not useful if
DM. A surface mesh is a network, thus Dijkstra’s short- 4. = b.y; and in this caseg-planes should be used. To
est path algorithm [3] can be used to compute the uppercater for arbitrarily positioned points, both andy-planes
bound between a pair of object points. Dijkstra’s algorithm need to be prepared, and the angle between the projection of
is much faster than Chen and Han's algorithm, because Di-(q, b) on the (:,y)-plane and the:-axis is used as a heuris-
jkstra’s algorithm computedy, notds and the number of tics to choose which set of planes to be used. That is, the
edges in a surface mesh is much less t¥atn is the num- angle is less thad5°, a set ofy-planes will be used;-
ber of nodes). When an object point is not a vertex in the planes otherwise.
surface model, ammbeddingprocess is used to add the  Denote the crossing line obtained by intersecting the ter-
p0|nt as a new vertex in the surface model by Connectlng rain (at the or|g|na| reso|ut|on) and p|a@e_ Y0 asl
it to the vertices of the same triangular facet. While a path l,, is a sequence of pointgz, yo, z)}. We define its reso-
found at a low resolution mesh may contains points that dOIut|on as 100%. A polyline can be approximated by fewer
not exist in the orlglnal surface mesh, the distance values i Inpomts_ This can be done usmg some line S|mp||f|cat|on al-
DMTM are computed using representative nodes which aregorithm such as [13] which can reduce the number of points
part of the original mesh. Therefore, the distance betweenwhile maintaining a maximum level of similarity between
two nodes in an approximate mesh network, as explainedthe lines before and after simplification. We do, however,
next, is computed from a valid network path on the original need to modify such an algorithm to ensure that MSDN
surface. Thus, this distance must be greater than or equal t@an be used to estimate the lower bound with monotonic

ds(a,b) by definition, and can be used @s. (a, b). increase of accuracy with higher resolution data. Consid-
Using the above method to estimate the upper bound, itering two consecutive points in a crossing line as a MBR,
can be guaranteed that for LOD levelsandr, ub,.(a, b) > our modification is to ensure that the MBR of the simpli-

ub,(a,b) if ¥ > r. This property, again, comes from the fied line segment must fully enclose the MBRs of every line
fact that every node in DMTM has a representative node in segment from the line segment before simplificatiorny, If

the original surface and all distances recorded are betweeris an approximation of,, usingr% points ofl, , we say
their representative nodes on the surface. As a lower LODthe resolution ot isr. Placmg a set of- andy-planes in
terrain is obtained by merging some points, the set of all the space, the set of crossing lines obtained from intersect-
representative nodes at LObDis a subset of the represen- ing them with the original surface form an SDN (with 100%
tative nodes at LOD > r. Therefore, the path corre- resolution). An SDN at resolution levelis obtained from
sponding to the shortest network path found at levet- simplifying every crossing line in the 100% resolution SDN
mains as a valid network path in the surface model at level by usingr% points for each crossing line. MSDN is then
r’. The fact thatub,- (a, ) is computed from the shortest defined as a collection of SDNs at a number of resolutions.



Using an SDN at resolutionto estimatéb,.(a,b) needs  perform this task, Algorithm MR3 needs to use the follow-
to use Dijkstra’s network shortest distance algorithm. A ing data structures: I}, contains a set of points which are
network is constructed from the SDN by treating each line the projections of each point in tfi2 on the (,y)-plane; 2)
segment as a node and there is an edge to link a node witla DMTM; and 3) a MSDN (at a pre-determined number of
each of the nodes which are line segments from the neigh-+resolutions). Both DMTM and MSDN are derived frafh
boring crossing lines. The length of an edge is the mini- This algorithm is sketched as below:
mum Euclidian distance between the MBRs of the two line 1 2p ;-NN Query Let ¢’ be the projection of on the
segments. Pointg andb also need to be embedded into (x,y)-plane. Perform a 2-NN search irD,,, to find

the network by connecting them with the nodes from the C1[1..k] C D whose projections to the:(y)-plane are
first crossing lines on the plane they encounter when mov- the k nearest neighbors .

i i h I ight line. N h . . S .
Ing one point to another along a str.’?ug t ne ote that 2. Surface Distance Calculatiohek points inC'1 will
only the SDN from a restricted area is required for lower . o .
bound computation for two given points (see the next sec- be ranked to find thé™ neighbor ofg on S, using
the algorithm described in the next section, based on

tion for detailed discussions), and not all planes need to be . . .
used for low resolution estimation. Therefore, it is unnec- DMTM a}nd MSDN. Let this plomt bé (and the esti-
mated distance upper bound.i&(q, b)).

essary to materialize the connection information for entire
SDN, which can be very large; they are computed on-the-fly 3. 2D Range QueryA normal range query will be per-
when they are retrieved for lower bound estimation. Be- formed onD,, usingq’ as the center andb(q, b) as
cause of the way we Compute the distance between two the radiUS, and all the pOintS retrieved is In@étg D.
nodes when building the network (i.e., using the minimum
distance between the MBRs of two line segments), such a
shortest distance computed using Dijkstra’s algorithm is a
low bound of the shortest surface distance. It is easy to see
that, when more planes are used, or higher resolution SDN X )
is used, such an estimatéidis getting longer and further neighbor ofg in C'2.
approaching the shortest surface distance. The first 3 steps are illustrated in Fig. 5. Note that step 1
The planes used to generate MSDN can be placed strate2nd step 3 are 2D spatial queries, which can be processed
gically according to terrain roughness (i.e., more denseéfficiently. For example, for 2[2-NN query, it can be per-
planes for more rugged region). To ensure an estimated disformed using one of several 2B-NN query processing
tance using MSDN can be as close agtothe planes can methods (e.g., [6, 8, 16]) ifD,,| is very large. Note that
be placed at the highest density for some region with thethe first and third steps can be donelin(i.e., to perform
interval that is equal to the average length of edges in the@ 3D k-NN query using the Euclidian distance). However,
original surface mesh. MSDN data can be stored in a spatiale found that the performance improvement from using 3D
database (as line segments with extra information to recordEUC"dian distance instead of 2D Euclidian distance is very
their resolution level and to which plane they belong to). To small. So we decide to use 2BNN query in this paper.
retrieve a set of MSDN data for a given region at a given The processes for step 2 and 4 are the same, except that
resolution can be efficiently supported by most commercial Step 2 needs an extra step to calculate an as tight as possible
spatial database systems (using a conventional spatial inUpper bound for thé"" neighbor, as this distance will be
dex). In addition, for a request of low resolution SDN data, used as the search radius in step 3, which in turn supplies

we reduce the density of crossing lines selected too. the points that need to be ranked in step 4.
The correctness of MR3 is straightforward. Any points

not selected iC'2 must have their Euclidean distancegto
longer thanub(g, b), and there are already points found
which have their upper bound distance less th&y, b).

4. Surface Distance Rankin@ll the points inC2 will
be ranked, using the same algorithm as in step 2, such
that the estimated upper bound of thfé neighbor of
q is not greater than the lower bound of tfie+ 1)*"

4 sk-NN Query Processing

In this section, we present Algorithm MR3, an efficient
algorithm forsk-NN query processing based on multireso-
lution data and distance ranking. We first give an outline of 4.2 Surface Distance Ranking
the algorithm. Then we discuss in detail for optimizing 1/0 Now we describe the process of surface distance rank-
regions and how the estimationaf andib can be improved  jng to rank a set of given points (called candidate points)
by using higher resolution data but in a reduced region.  py their estimated distance ranges, based on DMTM and
MSDN. This is used in both step 2 and 4 in MR3. First,

4.1 Algorithm MR3 the initial resolution levels of SDN and DMTM are deter-

Given a set of object dat®, a terrain surface, a query
pointq on the surface, and an integerur task is to find the
k nearest neighbors gfon the surface fror®. In order to

mined (from a pre-set, very low LOD). The lower bound
for each candidate point is initially set to be the Euclidean
distance betweeq and the point. The search region (RO,
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Figure 6. I/O and search region for upper bound
and is called 1/O region hereafter) for each point is the areaComputation in higher resolution
from which the environment data needs to be retrieved for
distance range estimation. The 1/O region is initially set to plane is an ellipse-like area instead of the entire surface (as
the entire terrain (we will further discuss this in the next in [2]). This is shown in see Fig. 6(a). The ellipse’s foci are
two subsections). Then DMTM and MSDN are retrieved the projections of; and the candidate point on the,{)-
according to the values of ROI and LOD. From here, the plane. The ellipse’s constant is the current estimated upper
upper and lower bounds are estimated alternately for eactPound value. Therefore, as the DMTM surface model reso-
candidate point until thé!" neighbor ofg can be safely lution increases, the estimated upper bound becomes more
identified. Details of estimating the upper and lower bounds accurate (i.e., smaller). This leads to a reduced search re-
using DMTM and MSDN, and the way to embeg have gion. Because only the ellipse-like search region needs to
already been described in Section 3. If thé& neighbor be processed in next computation, its MBR will be used as
cannot be determined by the current set of estimated dis-the I/O region.
tance ranges, a higher resolution data (for both DMTM and ~ Although the ellipse-like search region is a fraction of
MSDN) is required, but with potentially few number of re- the entire surface, it might be still very large considering the
maining candidates (i.e., those points which can be rankedPijkstra’s O(n*) complexity, in particular when the ellipse
safely as in or out of the final solution set can be dropped), i approximated by its MBR. We observe that the surface
and the search region for them will be reduced again (themodel with low resolution retains the major geographical
details in refining the search region for DMTM and MSDN  characteristics of the original one since DMTM modelling
will be discussed in the next two subsections). As there mayalgorithm minimizes the approximation errors. Therefore,
have multiple candidate points to be considered at each it-given two objects, it is more likely that the shortest sur-
eration, their 1/O regions (For each candidate point, its I/O face path on the higher resolution surface model follows the
region is the MBR of the search region) can be combined if similar track to that on the low resolution surface model.
they are significantly overlapped (e.g., over 80%) in order to Motivated by this observation, without losing the DMTM'’s
reduce 1/O cost. The algorithm terminates either when the property the ellipse-like search region can be further pruned
k*" neighbor has been identified, or the highest resolution to @ selectively refined search region. In Fig. 6(b), the re-

of both DMTM and MSDN have been used. fined search region is a set of MBRs formed by the descen-
dant nodes, in the DMTM tree, of the vertices which lie on
4.2.1 Estimating Upper Bound the path of current upper bound. The refined search region

) o gradually becomes narrower. If it is too narrow to compute
For each candidate, the upper bound estimation starts fromne shortest network path, its area will be expanded by dou-
the |n|t|al|zed resolution. In Ol’del’ to f|nd the firS'[ g|0ba| Op' ble each vertex's MBR. Note that' when using a collection
timum upper bound (corresponding to the global optimum f smaller MBRs instead a large MBR for the ellipse, the
shortest network path) on this resolution level, we use the cpy and I/O costs can be reduced but the estimalieday
entire DMTM surface model as the search redidhacan-  pe not as tight as the case when all the data from the ellipse
didate cannot be ranked, the upper bound estimation pro-grea is used. Nonetheless, ariyestimated in this way re-
cess continues to use the next higher level of DMTM data mains as a valid upper bound. We must point out that these

(at a pre-determined increase interval; see Section 5 for thesmaller MBRs will be combined into integrated 1/ regions
impact of choosing such intervals). The search region will ith all other active candidates).

be reduced to the area whose projection inside ihey)-

2The first global optimum upper bound can also be found by using 4.2.2 Estimating Lower Bound

method proposed in [2]. For description clarity, we use the entire surface . L. T
as the initial search region. Notice that the computation cost is not high, asAS @lready mentioned, the lower bound is firstly initialized

the initial resolution is very low (e.d).5% of the original one). as the Euclidean distance. If an object’'s rank cannot be



identified using the initialized one, the computation starts (WA) and Eagle Peak area (WY), USA. Both datasets cover
at a low resolution SDN and iterates at a higher resolution an area aroundl0.7km x 14km and contain about 1.5 and
until this object’s rank is identified. For each candidate, its 1.4 million elevation sample points respectively. The Bear-
ellipse-like upper bound search region can also serve as ithead area has more mountains than Eagle Peak. The object
lower bound search region. Thus, the lower bound I/O re- points are uniformly distributed on the surface with vary-
gion is the same as the upper bound’s as well. However,ing object densityl < o < 10. DMTM is pre-created and
for the purpose of estimating, the ellipse area cannot be a clustering B tree index is used. Specifically, DDM is
reduced as what we did for estimating. Thus, our op-  built by adapting simplification tool [5] with the Quadric Er-
timization focus is to reduce the CPU costs (recall that we ror Metrics to add distance and representative information
use Dijkstra’s shortest path algorithm to find the shortest to each node and theathnet is created by inserting one
path forlb estimation in an SDN). Oncela(q, a) is esti- Steiner point into each edge to the original surface. Both
mated for a candidate pointto ¢ from the lower resolution =~ DMTM and MSDN data are stored in the Oracle database.
SDN, the following process will be used to reduce the CPU .
cost. This is don?’-zpby using the conceptcafmmy lower 5.2 The Benchmark Algorithm
bound which is estimated using a small part of the ellipse-
like search region. This can be done by buildingesmve- 3500
lope from extending theb path identified from the previ- 3000 -
ous round (i.e., by making it “thicker”), and use those SDN
nodes (and edges) that are enclosed by the envelope. The
rational is that, db estimated in this way is greater than or
equal to thdb estimated using the entire ellipse-like search
region of SDN. Thus, if the distance range using the es-
timatedub with this [b cannot differentiate this candidate I
point, a truelb (estimated by using the entire ellipse-like 0 ‘ ‘ ‘ ‘

. . . . . . 0 5000 10000 15000 20000 25000 30000
search region SDN) is not possible to differentiate either Vertices number
(as it can only increase the extent of distance range over-
lapping). Thus, more accuratk estimation is required by Figure 7. Algorithm CH vs. Algorithm EA
using next higher resolution SDN. Otherwise, the tibe
on SDN at this resolution level needs to be estimated with
entire ellipse-like search region to confirm the result of the
dummy lower boundIf it is confirmed, (b estimation for
this point should terminate for the current SDN. Clearly,
the first round, a complete estimation in the entire ellipse-
like search region is necessary (but with very low resolution

2500 1
2000 -1
1500 1 —o— Chen & Han's algorthm

1000 1 -0~ Enhanced Approximation

Response Time (sec)

500 -

To calculate the surface distance idr estimation, one
can either use the exact algorithm or an approximate algo-
rithm, as discussed in Section 2. The Chen and Han al-
for gorithm is one of the best and only feasible exact surface
distance algorithms. This algorithm can be used on the
original surface model to directly compute the surface dis-

SDN) tance. We test this approach (denoted as CH) using the im-
' plementation by Kaneva and O’Rourke [10]. An alternative
5 Performance Evaluation approach is to use the Kanai and Suzuki algorithm. This

In this section, MR3 algorithm is evaluated against a method starts from the original surface model and contin-

R 0 i
benchmark algorithm, for the response time, CPU cost andU€s to thepathnetlevel for ub estimation. The 100% res

. . . folution SDN is used here fdb estimation. We call this
the number of disk pages accessed, with varying values o approach as the Enhanced Approximation Surface Distance
k, object density (i.e., number of objects perm?) and bp bp

: . : . Algorithm (EA). We allow 3% error in shortest surface cal-
resolution step length (i.e., the resolution difference be- . : ; .
N . culation (i.e., shortest surface distance range computation
tween two consecutive iterations).

terminates once it reach@§% accuracy). Fig. 7 shows
5.1 Experiment Setup the performance of EA and CH. Clearly, CH is not scalable
The experiments are conducted on a PC (ADM Athlon with the number of surface points. When a surface con-
XP 2400+ CPU, 1.3 GB memory). Oracle Enterprise Edi- tains 10,000 vertices (that covers about &ne’ in a 10m
tion Release 9.2.0.1 is used, but Oracle Spatial OptionDEM file), this approach is practically not useable. Thus,
and object-features are not used in order to have a betteEA is used as the benchmark algorithm férestimation in
control and understanding of the query execution perfor- our experiments. For fair comparison, the methods used for
mance. All spatial indexes used in our experiments are im-finding the first global optimal shortest path and selective
plemented by us. Two real world large scale terrain sur- search region refinement in the benchmark algorithm are
face models, BH and EP, are created from USGS DEM filesthe same as those used by MR3. Moreover, to highlight the
(data.geocomm.com) for two regions: Bearhead Mountain effect of multiresolution orsk-NN query processing, the



0. 3.5 = 3. DMTM: 0.5%, 100%, 200%; MSDN: 25%,

9 100%.
90 4 i
80 4 5 5.4 Effect ofk
3 , , In general, a rapid jump to higher resolution implies less
< 70 1 —o— Euclidean distance . A . .
5 ol o SDN resolution 25% iteration needed fosk-NN query processing. However, this
g & SDN resolution 37.5% also means less opportunity to use tighter distance bound
< 50 1 < SDN resolution 50% estimation (to reduce the size of search region and to termi-
-X- SDN resolution 75% . . . .
40 - o~ SDN resolution 100% nate the search earlier). This set of experiment is to test the
30 performance of MR3 with varying value (from 3 to 30).
0 25 50 75 100 125 150 175 200 The impact of object density will be examined later= 4
DMTM resolution in this test). The three sets of step increments defined before
Figure 8. Distance range accuracy are used. For example,= 3 means the experiment for the

upper bound computation begins frans% of the original
benchmark algorithm also apply the same filter techniquesresolution and next higher resolutionlig0% of that. After
as MR3. that, thepathnetis used. At the same time, the resolution of
MSDN starts from 25%, then jumps 1600%.

The comparison of performance between MR3 and EA
is depicted in Fig. 9. Despite the impact of the varying
step lengths, the overall test results of MR3 outperform the
benchmark remarkably in total time cost and CPU time.
It is interesting that the case of = 1 demonstrates the
best time performance in general, although it takes most
) . {:Iatabase page accesses. This is due to several reasons. First,
lutions, where MSDN is represented as the percentage %ince the search regions of upper and lower bounds are se-

trzgr::g}:riset dsa[;l}clhree;zlrléte%rt]agzlg ge?n?sl\gl\r:przzﬂgjig?hz irI1ectively refined, in the same search region, if the step length
S . . i long (jum much high resolution as in th her
the original resolution. Note that DMTM resoluti@d0% S 100 long (jump to & much high resolution as in the othe

imolies that apathnetwith one Steiner point per edae i two cases) more surface data will be processed in the next
! pé SAt thi alp | Vﬂ de by d f'l i P lrh pE I'dg IS higher resolution iteration. In this situation, owning to the
gfs?aﬁce is Iiic?tﬁedzva;a iva?// ofe egliﬁgillbg: shli)(\:/\; tlha: O(n?) time complexity of Dijkstra’s algorithm, the case of

. NS . . = 1 shows a significantly better CPU performance than
effectiveness of;b estimation (i.e., with statiéh). One can ¥ 9 y P

: . the other two cases (when= 2 and 3). Another impor-
ebserve th_a tthe best accuracy can be a_chle\_/ed 1S 3;5%_“ tant reason is that the casesof 1 also benefits more from
if the Euclidean distance is used &sestimation. This is

insufficient i i o diff tiate th f early termination when an object’s rank can be identified at
nsutticient in most cases to ditterentiaté the ranges ot can-, o, resolution level. On the other hand, more iterations
didate points. On the other side, estimation accuracy can be

) ; ) . of the case ofs = 1 incur more surface data access, but
improved rapidly and steadily when a higher LOD DMTM . L L

. . . the total I/O cost is optimized by accessing integrated I/O
is used, for all SDNs; and in the case of SDN resolution P Y 9 9

; . . region once for several objects. This is an important reason
0,

is 100%, MR3 can eventually ach_|e9é% accuracy. With that the CPU cost overwhelms the I/O cost and dominates

only 50% of DMTM used, the estimation accuracy can al-

. . in total time cost, shown in Fig. 9. This result exhibits the
0,
Eeady .reach 87%. U;mg the MR3 approach, a query like importance of using multiresolution fe#-NN query pro-
what is the surface distance betweeandb within accu-

, : . cessing (based on MR3). The total cost is optimized by
racy95%” can be directly processed. This level of accuracy trading off the less-cost I/O to reduce more dominant CPU

Ik;sl Sltjmmehm for most apE!lcr?nolns V\lle fcon3|der. Itt;s pess:- cost with better search region refinement. Note that the case
€ to achieve an even higher level of accuracy (by simply of s = 1is not as good as the case«f 2 whenk is less

inserting more Steiner points _into the highest LOD surface than 12. This is because the search region is so small that
medel to generate DMTM a_lt higher resolution). The cost of the CPU cost is dominated by the I/O cost.
doing so'is, hovyever, too high. . As depicted in Fig. 9(a), the total time cost of EA in-

In our expenn;ents, we start fro(:n very low resolution creases very rapidly so that it is practically not useable when
(DMTM from 0.5%, MSDN from 25%) and use three sets k > 9. On the other side, MR3 shows a much slow increase

of step length increment, as given below. rate wherk increases from 1 to 30. When= 1 that outper-
1. s = 1: DMTM: 0.5%, 25%, 50%, 75%, 100%, 200%; f | t der of itude than EA. When 3
MSDN: 25%. 37 5% 50%. 75%. 100%: orms almost one order of magnitude than EA. When
' N ' ’ ' MR3 has a performance increase pattern more similar to EA

2. s = 2: DMTM: 0.5%, 50%, 100%, 200%: MSDN: - -
! ! ' ' comparing to the others. This is because the case-of3
250, 50%, 100%: and paring

5.3 Distance Range Accuracy

A good indication of whether MDTM and MSDN are
effective forsk-NN query processing is how fast the esti-
matedb andub converges with the increase of LOD. Define
accuracy = % 0 < e < 1. Alargere indicates a higher
level of accuracy ofb and ub estimation. Fig. 8 reports
accuracy ratios with a range of MSDN and DMTM reso-
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Figure 9. Effect of k(0=4), using dataset BH (a-c) and EP (d-f)

is less multiresolution (this simulate traditional filter-and- larger than 5, the search region is so small that the I/O cost
refine approach that jumps to the full resolution data after takes a large share of the total cost. so the case-of2
one filtering step). shows a slightly better performance than the case-efl.
Fig. 9(a)-(c) illustrate the experiment results for dataset
Bearhead which has more rugged terrain than that of datase6 Conclusions
Eagle Park whose experiment results are presented in (d)- . . o -
(f). Generally, a rough surface often leads to a longer sur- 1 1iS paper is the first in-depth study of efficiert-NN
face distance than the less rough surface does. As a resulflU€"y Processing in spatial databases. The proposed algo-
the candidate set processed in step 4 of MR3 in Bearhead!thm MR3 focuses on the underlying terrain data manage-

dataset (rougher) is larger than that of Eagle Peak dataset. Ment and can avoid extremely expensive surface distance
computation by ranking objects based on estimated surface

5.5 Effectofo distance ranges. Two novel multiresolution data structures,
Now we examine the effect of object density, by fixing DMTM and MSDN, have been used to remodel the terrain
k=10. In general, the cost reduces as the object densitydata to significantly reduce the CPU and /O costs by ac-
increases (for a fixed where object points are randomly cessing and processing surface data in a just-enough man-
distributed on the surface). Given a surface model and thener. Our experiments using large scale, real terrain data
guery point, high object density is more likely to lead to a have shown that MR3 outperforms the benchmark algo-
small candidate region so that less surface data will be re-rithm in all cases by nearly one order of magnitude.
trieved and processed. Our previous work on developing MTMs for efficient
The experiment results are highly consistent with the last visualization [22] has been extended to support surface
experiment because of the same reason. In Fig. 10, EA il-NN query processing in this paper. The new multiresolu-
lustrates a quick increase when the object density decreasesion data structures provide a framework capable of sup-
This is because EA start&-NN processing from the orig-  porting other distance comparison based queries, such as
inal surface model, by which the search and I/O region arerange queries and closest pair queries. The idea of progres-
not fully optimized by any multiresolution technique. Inthe sive increase of surface distance accuracy is also applicable
contrary, benefited from using multiresolution data struc- to other types of surface-based queries with a specified tar-
tures and the integrated 1/O region technique, the overallget ROl and LOD. Next on our research agenda, we will
performance of MR3 for all step lengths is significantly investigate the modelling and query processing techniques
better than EA; and the best case is whea 1. Due to towards an efficientk-NN query with obstacle constraints,
the same reason as last experiment, when object density isvhich can be found in many real-lifé-NN applications,
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k=10), using dataset BH (a-c) and EP (d-f)

such as energy consumption and vehicle stability consider-[11] S. Kapoor. Efficient computation of geodesic shortest paths.

ations for rovers, and general traversability constraints.
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