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Abstract. The need of processing graph reachability queries stems from many
applications that manage complex data as graphs. The applications include trans-
portation network, Internet traffic analyzing, Web navigation, semantic web, chem-
ical informatics and bio-informatics systems, and computer vision. A graph reach-
ability query, as one of the primary tasks, is to find whether two given data ob-
jects,u andv, are related in any ways in a large and complex dataset. Formally,
the query is about to find ifv is reachable fromu in a directed graph which is
large in size. In this paper, we focus ourselves on building areachability label-
ing for a large directed graph, in order to process reachability queries efficiently.
Such a labeling needs to be minimized in size for the efficiency of answering the
queries, and needs to be computed fast for the efficiency of constructing such a
labeling. As such a labeling, 2-hop cover was proposed for arbitrary graphs with
theoretical bounds on both the construction cost and the size of the resulting la-
beling. However, in practice, as reported, the construction cost of 2-hop cover
is very high even with super power machines. In this paper, wepropose a novel
geometry-based algorithm which computes high-quality 2-hop cover fast. Our
experimental results verify the effectiveness of our techniques over large real and
synthetic graph datasets.

1 Introduction

Consider a reachability query querying whether a nodev is reachable from nodeu in a
large directed graph,G. There are several possible yet feasible solutions for efficiently
answering such a query, as indicated in [2]. Those solutionsinclude i) maintaining the
transitive closure of edges, which results in high storage consumption, and ii) comput-
ing the shortest path fromu to v over such a large graph on demand, which results high
query processing cost. A 2-hop reachability labeling, or 2-hop cover, was proposed by
Cohen et al, as a feasible solution, to answer such reachability queries [2]. The key is-
sue is how to minimize such a 2-hop cover, because the minimum2-hop cover leads to
the efficiency of answering reachability queries. The problem is shown to be NP-hard,
because minimum 2-hop cover is a minimum set cover problem. Cohen et al proposed
an approximation solution. The theoretical bound on the size of 2-hop cover is also
provided. Despite the excellence of the theoretical bound on the time complexity, the
cost for computing the minimum 2-hop cover is high when dealing with large graphs.
In [19], Schenkel, Theobald and Weikum run Cohen et al’s algorithm on a 64 processor



Sun Fire-15000 server with 180 gigabyte memory for a subset of DBLP which con-
sists of 344,992,370 connections. It took 45 hours and 23 minutes using 80 gigabytes
of memory to find the 2-hop cover which is in size of 1,289,930 entries. The long con-
struction time makes it difficult to construct such a 2-hop cover for large graphs.

The main contribution of our work in this paper are summarized below.

– We propose a set cover I solution (SCI) instead Cohen et al’s set cover II solution
(SCII) [8], whereSCI minimizes the number of subsets in a set cover andSCII
minimizes the overlapping among subsets in a set cover. We show evidences that
SCI can achieve a similar satisfactory level asSCII as to minimize the 2-hop cover
for a large graph, and at the same time can compute 2-hop coverefficiently.

– We propose a novel geometry-based algorithm to further improve the efficiency of
computing 2-hop cover. The two main features of our solutionare given below.
First, we do not need to compute transitive closure as required in all algorithms
that need to compute 2-hop. Second, we map the 2-hop cover problem onto a two-
dimensional grid, and compute 2-hop using operations against rectangles with help
of a R-tree.

– We conducted extensive experimental studies using different graph generators, and
real datasets, with different parameter settings. Our results support our approach as
it can significantly improve the efficiency of finding 2-hop cover for large graphs.

The remainder of this paper is organized as follows. Section2 gives the definition
of the 2-hop cover problem. Section 3 discusses our motivation of solving the 2-hop
cover problem using a set cover I solution [8] instead of the set cover II solution used in
Cohen et al’s study [2]. Our work is motivated by the main requirements of the 2-hop
cover problem: minimization of the 2-hop cover and minimization of processing time.
Section 4 discusses a new geometry-based approach as a set cover I solution to the 2-
hop cover problem. Experimental results are presented in Section 5 followed by related
work in Section 6. Finally, Section 7 concludes the paper.

2 Problem Definition

The 2-hop reachability labeling is defined in [2]. We introduce it below in brief. Let
G = (V, E) be a directed graph. A 2-hop reachability labeling on graphG assigns
every nodev ∈ V a labelL(v) = (Lin(v), Lout(v)), whereLin(v), Lout(v) ⊆ V such
as every nodex in Lin(v) connects to every nodey in Lout(v) via the nodev. A node
v is reachable from a nodeu, denotedu ; v, if and only ifLout(u)∩Lin(v) 6= ∅. The
size of the 2-hop reachability labeling over a graphG(V, E), is given asL, below.

L =
∑

v∈V (G)

|Lin(v)| + |Lout(v)| (1)

In order to solve the 2-hop reachability labeling, Cohen et al. introduced 2-hop
cover, which is given below [2].

Definition 1. (2-hop cover) Given a directed graphG = (V, E). Let Pu;v be a set
of paths from nodeu to nodev in G, andP be a set of all suchPu;v in G. A hop,



hu, is defined ashu = (pu, u), wherepu is a path inG andu is one of the endpoints
of pu. A 2-hop cover, denotedH , is a set of hops that coversP , such as, if nodev is
reachable from nodeu then there exists a pathp in the non-emptyPu;v where the path
p is concatenation ofpu andpv, denotedp = pupv, andhu = (pu, u) andhv = (pv, v).

The 2-hop reachability labeling can be derived from a 2-hop cover [2]. In addition,
the size of the 2-hop cover,|H |, for a graphG, is the same as that of 2-hop reachability
labeling (|H | = L).

The 2-hop cover problem is to find the minimum size of 2-hop cover for a given
graphG(V, E), which is proved to be NP-hard [2]. Cohen et al show that a greedy
algorithm exists to compute a nearly optimal solution for the 2-hop cover problem.
The resulting size of the greedy algorithm is larger than theoptimal at mostO(log n).
The basic idea is to solve the minimum 2-hop cover problem as aminimum set cover
problem [8]. Note: in the corresponding minimum set cover problem, a set is a set of
edges.

We illustrate Cohen et al’s algorithm in Algorithm 1. We callit MaxDSCovering.
In Algorithm 1, it initializes the 2-hop coverH (line 1), and computes the transitive
closure,T , for the given graphG (line 2). Here,T is treated as the ground set of the
minimum set cover problem. The main body of the algorithm is awhile loop, which
repeatedly finds hops untilT becomes empty (line 3-14). The 2-hop cover is returned
in line 15. In line 5-10, it finds a densest bipartite graph,B, which has nodew as its
virtual center, by calling a functiondenSubGraph. In denSubGraph, the densest bipartite
graph is constructed, based on a nodew, in two main steps.

– Construct a bipartite graphBC(VC , EC) whereVC = VCin
∪VCout

, based on node
w, such as

VCin
= {u | (u, w) ∈ T } ∪ {w} (2)

VCout
= {v | (w, v) ∈ T } ∪ {w} (3)

and
EC = VCin

× VCout
(4)

The sets,VCin
andVCout

, are all connected via the virtual centerw, respectively.
– Find the densest bipartite graph, denotedB(V, E), whereV = Vin ∪ Vout, from

BC , such as

max
Vin⊆VCin

Vout⊆VCout

E⊆EC

|E ∩ T ′|

|Vin| + |Vout|
(5)

whereT ′ is the set of uncovered edges. Note: finding the minimum set over is
equivalent to find the densest subgraph [2], as illustrated in Eq. (5). As a densest
subgraph problem, it can be solved in polynomial time [5].

The candidate bipartite graphB with the highest score (Eq. (5)), after checking every
node inG, is identified after line 10. In line 11-12, new hops are addedinto the 2-hop
cover, based onB. After it, the set of edges ofB, denotedE(B) will be removed from
T ′.



Algorithm 1 MaxDSCovering(G)

Input : graph,G(V, E).
Output : 2-hop cover,H .

1: H ← ∅;
2: T ′ ← T ← {(u, v) | Pu;v 6= ∅};
3: while T ′ 6= ∅ do
4: τ ← 0;
5: for all w ∈ V do
6: B ← denSubGraph(w, T , T ′) with a scorecw ; {B(V, E) is a bipartite graph with

V = Vin ∪ Vout.}
7: if cw > τ then
8: vb ← w; τ ← cw ; B ← B;
9: end if

10: end for
11: for all u ∈ Vin of B do H ← H ∪ {(u ; vb, u)};
12: for all v ∈ Vout of B do H ← H ∪ {(vb ; v, v)};
13: T ′ ← T ′ \ E(B);
14: end while
15: return H ;

3 A Set Cover I Solution

Cohen et al. solve (approximate) the minimum 2-hop cover problem as a minimum set
cover problem with a theoretical bound on the time complexity, O(n4) wheren is the
number of nodes in the graphG. However, it is challenging to compute such a 2-hop
cover for very large graphs because the algorithm is CPU intensive as reported in [18,
19]. Also, it needs to precompute the transitive closure which requires large memory
space. Recall, in [19], Schenkel, Theobald and Weikum run Cohen et al’s algorithm on
a 64 processor Sun Fire-15000 server with 180 gigabyte memory for a subset ofDBLP
which consists of 344,992,370 connections. It took 45 hoursand 23 minutes using 80
gigabytes of memory to find the 2-hop cover which is in size of 1,289,930 entries.

The minimum set cover problem used inMaxDSCoveringis called a minimum set
cover II problem, denotedSCII, in [8]. SCII is to find a set cover which has the least
overlapping, and shares the same goal as 2-hop cover problem’s. In [8], Johnson also
gave a set cover I problem, denotedSCI, which is to minimize the cardinality. Here,
consider a set of subsetsS1, S2, · · · , Sm, over a finite setS (= ∪iSi). The minimum
set cover I (SCI) is to find a smallest set of sets, denotedS, such as∪jSj = S for
Sj ∈ S. The two set cover problems,SCI andSCII, are different. The optimal solution
for one may not be the optimal solution for the other.

In this paper, we show that the minimum 2-hop cover problem can be solved using
SCI effectively. By effectiveness, we mean that the size of 2-hop set identified bySCI
is very similar to the size of 2-hop set identified bySCII, in practice, using greedy
algorithms, when handling large graphs.

We propose an algorithm calledMaxCardinality. The algorithm is the same as
MaxDSCoveringafter replacing Eq. (5) with the following equation Eq. (6),for find-
ing a bipartite subgraphB(V, E) from a bipartite graphBC(VC , EC) whereV =
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Fig. 1.SCII vs SCIover a Directed Acyclic Graph (|V | = 2, 000, |E| = 4, 000)

Vin ∪ Vout. As the name of the algorithm indicates, it is to maximize thecardinality
of the edges (uncovered paths) in each bipartite graph.

max
Vin⊆VCin

Vout⊆VCout

E⊆EC

|E ∩ T ′| (6)

whereT ′ is the uncovered set.
We show the similarities and differences between the two solutions, namely,SCI

andSCII, in Fig. 1, using a random graph,G(V, E) where|V | = 2, 000 and |E| =
4, 000, generated by a graph generator [9]. In Fig. 1, it comparesMaxCardinality(a
SCIsolution) withMaxDSCovering(aSCII solution). The figures (a)-(d) are forMaxD-
SCovering, and the figures (e)-(h) are forMaxCardinality. Note: both algorithms are the
same as shown in Algorithm 1 except thatMaxDSCoveringuses Eq. (5) andMaxCar-
dinality uses Eq. (6) for identifying a subgraph.

– In Fig. 1 (a) and (e), we show the density of the subgraph foundin MaxCardinality
andMaxDSCovering(B(V , E) in Algorithm 1). The density (y-axis) is|E|/(|Vin|+
|Vout|) whereV = Vin ∪Vout. It is important to note thatMaxCardinalitydoes not
use it to compute, but uses it to measure its density per iteration, in comparison
with MaxDSCovering.
MaxDSCoveringdecreases monotonically, because it always finds the best densest
subgraph per iteration (Fig. 1 (a)).MaxCardinalitydecreases globally, but shows
fluctuation patterns (Fig. 1 (e)), because it cannot find the best densest subgraph
per iteration. However, one very important observation is thatMaxCardinalitycan
find a more dense graph than former selected ones in one of the following iterations
after it misses a densest graph in some iteration. If we compare the two subfigures,



MaxCardinalitysometime outperformsMaxDSCoveringin many iterations for this
reason.

– In Fig. 1 (b) and (f), we show the accumulated compression ratio, |Ti|/Hi, where
Ti is the transitive closure that has been covered already at the i-th iteration, and
Hi is the 2-hop cover forTi. Both figures are almost the same. It shows that the 2-
hop cover can be solved effectively using aSCIsolution. For this graph, the size of
the transitive closure,T , is |T | = 24, 888. The sizes of the 2-hop covers found by
MaxDSCoveringandMaxCardinalityare, 6,840 and 7,089. The difference is 249.
The compression rate of the 2-hop covers byMaxDSCoveringandMaxCardinality
are,0.27 (6, 800/248, 88) and0.28 (7, 089/24, 888).

– In Fig. 1 (c) and (g), we show the coverage of the graph up to thei-th iteration,
|Ti|/|T ′

i |, whereTi is the transitive closure being covered at thei-th iteration, and
T ′ is the transitive closure that has not been covered up to thei-th iteration. Both
share the similar trend.

– In Fig. 1 (d) and (h), we show the CPU time spent in every iteration. Due to the
difference betweenSCI (Eq. (5)) andSCII (Eq. (6)),MaxCardinalityspends much
less time thanMaxDSCovering.

The above discussions show that aSCIsolution can effectively and efficiently solve
the minimum 2-hop cover problem.

4 A Fast Geometry-Based Algorithm for the Set Cover I Solution

In this section, we show that we can significantly improve theefficiency ofMaxCardi-
nality (aSCIsolution) by solving it over a 2-dimensional space using simple operations
against rectangles.

The outline of our approach is given below. First, for a givendirected graphG, we
construct a directed acyclic graph, denotedG↓. Second, we compute the 2-hop cover for
the directed acyclic graphG↓. Third, we compute the 2-hop cover for the directed graph
G using the 2-hop cover obtained forG↓, in a simple post-processing step. Below, we
discuss the first step, and the third step and will discuss thesecond step in the following
subsections.

Directed acyclic graph construction: Given a directed graphG(V, E), we identify
its strongly connected components,C1, C2, · · · efficiently, in the order ofO(|V | +
|E|) [4]. Note: any two nodes are reachable if they are in the same strongly connected
component,Ci. The directed acyclic graphG↓(V↓, E↓) is constructed as follows. A
nodev ∈ V↓ represents either a strongly connected component,Ci or a node inG. If
v represents a strongly connected componentCi, we randomly select one of the nodes
in Ci, denotedv′, as the representative inV↓. All other nodes inCi will not appear in
V↓. All the edges between the nodes in the strongly connected componentCi will not
appear inE↓; all edges going into/from the strongly component,Ci, will be represented
as edges going into/from the nodev′ in E↓. If v represents a node inG, which is not
involved in any strongly connected component, the node willbe added intoV↓, and the
corresponding edges going into/fromv appear inE↓. The conversion ofG to G↓ can be
done as the same time when finding strongly connected components as a by-product.



Generation of 2-hop cover forG upon the 2-hop cover forG↓: Recall in a strongly
componentCi, any two nodes,u andv, are reachable such asu ; v andv ; u.
Therefore, they share the same 2-hop. Suppose that we know the 2-hop for a nodeu in
a strongly connected component,Ci, all the nodes inCi should have the same 2-hop.
The 2-hops can be simply added for connecting nodes in a single strongly component.

4.1 Computing 2-hop Cover for a Directed Acyclic Graph

In the following subsections, we explain how to compute 2-hop cover for a directed
acyclic graph. The main techniques are: 1) to map a reachability betweenu ; v onto
a grid point in a 2-dimensional grid, 2) map a bipartite graphwith a virtual center into
rectangles, and 3) compute the densest bipartite graph, based on Eq. (6), as to compute
the largest area of rectangles. Note: R-tree can be used to assist the last step.

Below, in Section 4.2, we introduce an efficient approach [1]which computes an
interval labeling for reachability over a directed acyclicgraph. Note: there is no need
to compute transitive closure. We will discuss space complexity between the interval
labeling and 2-hop labeling in our experimental studies. InSection 4.3, we discuss a 2-
dimensional reachability map, which is constructed using the interval labeling [1]. The
reachability information is preserved completely in the map. In Section 4.4, we give our
algorithm, and explain it using an example.

4.2 An Interval Based Reachability Labeling for Directed Acyclic Graphs

Agrawal et al [1] proposed a method for labeling directed acyclic graphs using inter-
vals. The labeling is done in three steps for a directed acyclic graph,GD. 1) Con-
struct an optimum tree-coverT . An optimum tree-cover is defined as to minimize
the number of intervals. 2) Every node,v, in T is labeled using an internal[s, e]. A
nodev has a uniquepostorder number, denotedpo, which is the number assigned
following a postorder traversal of the tree starting from 1.The e value in [s, e] for a
nodev is the postorder number of the nodev, and thes value in the interval is the
smallest postorder number of its descendants, wheres = e if v is a leaf node. 3) Af-
ter T is labeled, it examines all nodes ofGD in the reverse topological order. During
the traversal, for each nodeu, add all the intervals associated withv, if there exists
an edge(u, v), into the interval associated withu. An interval can be eliminated if
it is contained in another. LetIu be a list of intervals assigned to a nodeu. Sup-
pose there are two nodesu and v whereIu = {[s1, e1], [s2, e2], · · · , [sn, en]}, and
Iv = {[s′1, e

′
1], [s

′
2, e

′
2], · · · , [s′m, e′m]}. There exists a path fromu to v iff the postorder

of v is in an interval,[sj , ej], of u.

4.3 A 2-Dimensional Reachability Map

First, we show how to construct a 2-dimensional reachability map,M . With the help of
M , we want to checku ; v in a directed acyclic graph,G↓, quickly, using a function
f(u, v), such asf(u, v) = 1 iff u ; v, andf(u, v) = 0 iff u 6; v.

The construction of the reachability map is done using two interval labelings ob-
tained on the directed acyclic graph,G↓(V↓, E↓), on which we are going to compute
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Fig. 2.A directed graph, and its two directed acyclic graphs,G↓ andG↑

w G↓ G↑

po↓(w) I↓(w) po↑(w) I↑(w)

0 9 [1,9] 4 [4,4]
1 1 [1,1],[3,3] 3 [1,5]
3 6 [1,6] 5 [4,5]
4 2 [2,2] 9 [4,5],[9,9]
5 5 [3,5] 6 [4,6]
8 7 [1,1],[3,3],[7,7] 1 [1,1],[4,4]
9 4 [3,4] 7 [4,7]
11 3 [3,3] 8 [1,8]
12 8 [1,1],[3,3],[8,8] 2 [2,2],[4,4]

Table 1.A Reachability Table forG↓ andG↑

its 2-hop cover, and another auxiliary directed acyclic graph,G↑(V↑, E↑), respectively.
Note: G↑(V↑, E↑) can be easily obtained fromG↓(V↓, E↓), such asV↑ = V↓, and a
corresponding edge(v, u) ∈ E↑ if (u, v) ∈ E↓. In brief, for a node,u, the former can
tell which nodesu can reach, and the latter can tell which nodes can reachu, fast. For
the pair of graphs,G↓ andG↑, we compute the postorder numbers (op↓ andop↑) and
interval labels (I↓ andI↑), using Agrawal et al’s algorithm efficiently [1]. We store them
in a table, called areachability table.

Example 1 As a running example, a random directed graph,G1(V1, E1), with 12
nodes and 19 edges, is shown in Fig. 2 (a). There are two strongly connected com-
ponents. One is among nodes10 and5, the other is among nodes1, 6 and7.

Consider the example graphG1 (Fig. 2 (a)). Its two directed acyclic graphs,G↓
andG↑, are shown in Fig. 2 (b) and (c), respectively. InG↓, there are only 9 nodes
out of 12 nodes inG1, because there are two strongly connected components. One is
among nodes 5 and 10, and the other is among 1, 6 and 7. We select5 and 1 as the
representatives for the former and latter strongly connected components inG↓. The
corresponding reachability table is shown in Table 1. In Table 1, the first column is
the node identifiers inG1 (Fig. 2 (a)). The second and third columns are the postorder
number and the intervals forG↓, and the fourth and fifth columns are the postorder
number and the intervals forG↑.

We can virtually represent the reachability table, as ann × n-grid reachability map
M , wheren = |V↓| = |V↑|. The x-axis represents the postorder numbers of the nodes



in the graphG↓, and the y-axis represents the postorder numbers of the samenodes in
the graphG↑. Note, the postorder numbers are in the range of[1, n]. Given a pair of
nodes,u andv in G↓, a functionf(u, v) maps it onto a grid(x(v), y(u)) in M , where
x(w) = op↓(w) andy(w) = op↑(w). Here,op↓(w) represents the postorder number
of w in G↓ andop↑(w) represents the postorder number ofw in G↑. The grid value of
f(u, v) is 1, if u ; v, otherwise 0.

The reachability mapM for G↓ (Fig. 2 (b)) is shown in Fig 3, where a shaded grid
shows a reachabilityu ; v. The details for all possibleu ; v, such asu 6= v, G↓, are
given in Table 2. For example,3 ; 9, is mapped onto(4, 5) in M , and(4, 5) represents
3 ; 9, because it is shaded.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Fig. 3. Reachability Map

p f(p) p f(p) p f(p)

0 ; 1 (1, 4) 0 ; 3 (6, 4) 0 ; 4 (2, 4)
0 ; 5 (5, 4) 0 ; 8 (7, 4) 0 ; 9 (4, 4)
0 ; 11 (3, 4) 0 ; 12 (8, 4) 1 ; 11 (3, 3)
3 ; 1 (1, 5) 3 ; 4 (2, 5) 3 ; 5 (5, 5)
3 ; 9 (4, 5) 3 ; 11 (3, 5) 5 ; 9 (4, 6)
5 ; 11 (3, 6) 8 ; 1 (1, 1) 8 ; 11 (3, 1)
9 ; 11 (3, 7) 12 ; 1 (1, 2) 12 ; 11 (3, 2)

Table 2.All u ; v in G↓

Second, we show that, for a nodew as a virtual center, all the the nodes thatw can
reach and the nodes that can reachw, can be represented as rectangles in the reach-
ability map,M . We explain it below. Given a nodew ∈ G↓. Suppose thatI↓(w) =
([s1, e1], [s2, e2], · · · , [sn, en]) andI↑(w) = ([s′1, e

′
1], [s

′
2, e

′
2], · · · , [s′m, e′m]). It is im-

portant to note that a pair[si, ei] in I↓(w) indicates that the corresponding nodes in
[si, ei] can be reached fromw and a pair[s′j , e

′
j] in I↑(w) indicates that the correspond-

ing nodes in[si, ei] can reachw. Therefore, all the possible pairs of[si, ej] and[s′j , e
′
j ]

represent the reachability withw as the center.
We define a functionRect(w) which maps the all reachability, withw as the virtual

center, onton × m rectangles inM , such as((si, s
′
j), (ei, e

′
j)) for every1 ≤ i ≤ n

and1 ≤ j ≤ m. Note: a rectangle being contained in another can be eliminated. Two
adjacent rectangles can be merged into a single rectangle.

The rectangular representation of the reachability of the nine nodes inG↓ (Fig.
4 (b)) are shown in Fig. 4. For example, consider nodew = 1 in G↓. The cross in Fig.
4 (b) represents nodew = 1 as1 ; 1 at the grid(x, y) = (1, 3) in M . Here,I↓(1) has
two intervals,[s1, e1] = [1, 1] and[s2, e2] = [3, 3], andI↑(1) has an interval[s′1, e

′
1] =

[1, 5]. The two rectangular representations become((s1, s
′
1), (e1, e

′
1)) = ((1, 1), (1, 5))

and((s2, s
′
1), (e2, e

′
1)) = ((3, 1), (3, 5)).

Third, we show thatRect(w) represents a bipartite graphBC(VC , EC) ⊆ G↓,
which hasw as its virtually center, in the reachability map,M . Recall:VC = VCin

∪
VCout

, Vin (Eq. (2)) andVout (Eq. (3)) can be computed as follows.

VCin
= g↑(Rect(w)) (7)

VCout
= g↓(Rect(w)) (8)
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Fig. 4.Rectangular representations of bipartite graphs for nodesw ∈ G↓.

whereg↓ andg↑ are functions that return a set of node identifiers represented as pos-
torder numbers in they-axis andx-axis. We explain the two functions,g↓ andg↑, using
an example.

Reconsider nodew = 1 again inG↓ (Fig. 2 (b)).Rect(w) represents two rectangles,
((1, 1), (1, 5)) and((3, 1), (3, 5)). Rect(w) coversx-values inX = {1, 3} andy-values
in Y = {1, 2, 3, 4, 5}. As shown in Table 1,Vout = {1, 11}, because1 = op−1

↓ (1)

and11 = op−1
↓ (3). In a similar fashion,Vin = {8, 12, 1, 0, 3}, because every value,

k ∈ Vin, is obtained by a valuel ∈ Y , such ask = op↑(l). The corresponding bipartite
graph is shown in Fig. 5.

Fourth, we show that we can compute densest bipartite graphsusing rectangles. Let
BC1

andBC2
be two bipartite graphs for nodesw1 andw2. We have the following three

equations.

Rect(BC1
∩ BC2

) = Rect(BC1
) ∩ Rect(BC2

) (9)

Rect(BC1
∪ BC2

) = Rect(BC1
) ∪ Rect(BC2

) (10)

Rect(BC1
− BC2

) = Rect(BC1
) − Rect(BC2

) (11)

The above equations state that the rectangle of union/intersection/difference of two
bipartite graphs is the union/intersection/difference ofthe rectangles of the two bi-
partite graphs. Based on them, we can fast computeSCI using rectangles. We omit
the proof, because it is trivial. An example is shown in Fig. 6. Here,BC1

is mapped
onto ((x1, y1), (x2, y2)) by Rect(BC1

), andBC2
is mapped onto((x3, y3), (x4, y4))
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Fig. 5. A bipartite graph forw = 1 in G↓

BC1

(x4, y4)
BC2

(x1, y1)

(x2, y2)

(x3, y3)

Fig. 6.BC1
−BC2

by Rect(BC2
). Rec(BC1

− BC2
) is the two rectangles:((x1, y1), (x3 − 1, y2)) and

((x3, y4 + 1), (x2, y2)).

4.4 The Algorithm

We discuss our new fast 2-hop algorithm, calledMaxCardinality-G, because it can re-
sult in the same set of 2-hop cover asMaxCardinality. The efficiency ofMaxCardinality-
G is achieved due to the introduction of reachability map and the operations over rect-
angles (Eq. (9), (Eq. (10) and (Eq. (11)). We do not need to compute bipartite graphs,
BC , with a nodew as its virtual center, and we do not need to compute sets. Instead,
we useI↓ andI↑ to obtainBC , and use rectangles to determine the densest subgraph
based onSCI.

In MaxCardinality-G(Algorithm 2), it takesG as an input directed graph. It con-
structs a directed acyclic graphG↓ for G (line 1), and computes its reachability table
and its reachability map (line 2). The 2-hop cover,H↓, will be obtained after line 12. In
line 13, it computes a 2-hop cover for the given graphG based on the 2-hop cover,H↓,
for G↓. The 2-hop coverH is returned in line 14. The main body ofMaxCardinality-G
is to compute the 2-hop coverH↓ for the directed acyclic graphG↓. For computing
H↓, it initializesH↓ in line 3. Also, in line 4, it initializes∆ as empty which is used to
maintain all the rectangles covered by the algorithm. A rectangle represents a bipartite
subgraph inG↓. In line 6, it finds the densest bipartite subgraph, with nodew as its
center inG↓, in terms of Eq. (5), using operations (Eq. (9), (Eq. (10) and(Eq. (11))
upon its corresponding rectangles,Rect(w), over the reachability mapM . In line 6, it
finds the largest area ofRect(w) − ∆. Suppose the largest rectangle is for nodew, in
line 7-9, it add hops intoH↓. Afterward, it adds the covered rectangles into∆ (line 10),
and removes nodew from the set of nodesV↓ (line 11).

We explainMaxCardinality-Gusing the directed acyclic graph exampleG↓ (Fig.
2) (b). Below, we show the details of the algorithmMaxCardinality-G, in comparison
with its counterpart algorithmMaxCardinality. The 4 bipartite graphs, generated in the
4 iterations of the algorithmMaxCardinalityare shown in Fig. 8, using Eq. (6). In the
1st iteration, it finds a bipartite graph withw = 3 as its virtual center (Fig. 8 (a)); in the
2nd iteration, it finds a bipartite graph withw = 1 as its virtual center (Fig. 8 (b)); in
the 3rd iteration, it finds a bipartite graph withw = 9 as its virtual center (Fig. 8 (c));
and in the 4th iteration, it finds a bipartite graph withw = 0 as its virtual center (Fig.
8 (d)).

Recall the reachability map, which preserves the complete reachability information
is given in Fig. 3. Therefore, the algorithmMaxCardinality-Gneeds to find all rectan-
glesRect(w), for nodew, that cover all the valid points in the reachability map. We



Algorithm 2 MaxCardinality-G

Input : a graph,G(V, E)
Output : a 2-hop cover,H

1: Construct a directed acyclic graphG↓(V↓, E↓);
2: Compute the reachability table, and consider it as a virtual reachability map;
3: H↓ ← ∅ {2-hop cover forG↓}
4: ∆← ∅; {covered rectangles}
5: while V↓ 6= ∅ do
6: letw be the node with the max area ofRect(w)−∆; {Densest subgraph in terms ofSCI}
7: letu andv be two nodes inG↓;
8: for all (x(w), y(u)) ∈ Rect(w) do H↓ ← H↓ ∪ {(u ; w, u)};
9: for all (x(v), y(w)) ∈ Rect(w) do H↓ ← H↓ ∪ {(w ; v, v)};

10: ∆← ∆ ∪ (Rect(w)−∆);
11: V↓ ← V↓ \ {w};
12: end while
13: ComputeH overH↓ for G;
14: return H ;
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Fig. 7. MaxCardinality-GSteps forG↓

show how it is done using Fig. 7. In Fig. 7 (a), all the shaded points are the valid points;
the cross point show the nodew = 3, which is the same node selected in the 1st iteration
of MaxCardinality(Fig. 8 (a)); and the striped points shows the largest area ofRect(w),
for w = 3, among all the other nodes. TheRect(3) corresponds to Fig. 8 (a). After this
step, the covered area,∆, is shown as dark points in Fig. 8 (b)-(d)). In the second it-
eration, the algorithmMaxCardinality-Gwill select a nodew = 1 which has largest
area ofRect(w)−∆. As shown above, the algorithmMaxCardinality-Gfinds the exact
bipartite graphs as the algorithmMaxCardinalitybut performs more efficiently, because
it only needs to use operations against rectangles. The hopsfound in every iteration are
given in Table 3.

We give implementation details for the algorithmMaxCardinality-G. The reacha-
bility table for the directed acyclic graphG↓ is maintained in memory. The rectangles
for the covered areas,∆, are maintained in a R-tree [6]. The area of a nodew with
Rect(w) − ∆ is done as follows. 1) useRect(w) to retrieve all the areas in∆ that
overlap withRect(w). 2) Suppose there aren rectangles,R1, · · · , Rn, returned. It does
Rect(w) − Ri for all 1 ≤ i ≤ n. 3) The area of theRect(w) − ∆ can be computed.
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Fig. 8. MaxCardinalitySteps forG↓

w 2-hops

3 (0 ; 3, 0),(3 ; 5, 5),(3 ; 9, 9)
(3 ; 11, 11),(3 ; 1, 1),(3 ; 4, 4)

1 (12 ; 1, 12),(8 ; 1, 8),(1 ; 11, 11)
9 ((5 ; 9), 5),(9 ; 11, 11)
0 (0 ; 8, 8),(0 ; 12, 12)

Table 3.2-hops

5 Experimental Studies

We conducted extensive experimental studies to study the performance of the three al-
gorithms, namely, the algorithmMaxDSCovering,MaxCardinality, andMaxCardinality-
G. We have implemented all the algorithms usingC++. In the following, denote them
asD, C andC-G, respectively.

Both D andC compute set cover, for a graphG(V, E), upon its transitive closure,
T , whose size can be very large, in the worst case,O(|V |2). We compute the transi-
tive closure using the algorithm [7], and precompute all bipartite graphs,BC(VC , EC)
which hasw as its center. All those precomputed bipartite graphs are stored in a B-tree
on disk. For a given nodew ∈ G, we can efficiently retrieve its corresponding bipartite
graphBC from disk through a simple buffering mechanism from the B-tree. ForD and
C, all the other data, except the transitive closureT , are maintained in main memory.
We also implemented a variation forD andC by the procedure of DAG conversion, that
is: 1) converting a directed graph into a directed acyclic graph, 2) finding 2-hop cover
for the directed acyclic graph usingD andC respectively, and 3) generating 2-hop cover
for the directed graph using a simple post-processing step,based on the 2-hop obtained
in step 2). We denote them asD* and C*, respectively. ForC-G, we maintain data
structures in main memory where possible including the reachability table and R-tree.
We use Antonin Guttman’s R-tree code4. We also implemented a ranking adopted from
[19], which is used to reduce the cost for computing densest bipartite graphs in every
iteration. Table 4 summarizes the processing involved in each algorithm.

MaxDSCovering MaxCardinalityProcessing Involved
D D* C C* C-G

Transitive Closure
Computation

√ √ √ √
×

DAG Conversion ×
√

×
√ √

Geometry-based
Approach

× × × ×
√

Table 4.Algorithms in Testing
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We generated various synthetic data using two graph generator, namely, the random
directed graph generatorGraphBasedeveloped by Knuth [14] and the random directed
acyclic graph generatorDAG-Graphdeveloped by Johnsonbaugh [9]. We vary two pa-
rameters,|V | andE|, used in the two generators, while the default values for theother
parameters. We also tested several large real graph datasets.

4 http://web.archive.org/web/20020802233653/es.ucsc.e du/˜tonig/
rtrees



We conducted all the experiments on a PC with a 3.4GHz processor and 2GB mem-
ory running Windows XP.
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5.1 Exp-1: Comparison of the Five Algorithms over Directed Graphs

Because the focus of this paper is to compute 2-hop cover for general directed graphs,
we first generate 10 random directed graphs usingGraphBase, where|V | = 5, 000
and |E| = 10, 000, with different seeds. We compare five algorithms, namely, two
SCII algorithms and threeSCI algorithms. Note:D andD* are aSCII solution, and
C, C* andC-G are aSCI solution. We report the size of 2-hop cover,H , processing
time (sec), memory consumption (MB), and the number of I/O accesses. Figure 10
shows the details forD, C, D*, C*, andC-G in that order, using 10 random directed
graphs. In terms of quality, they all performed in a similar way. All algorithms achieved
the similar size of 2-hop cover and hence the similar compression ratio. In terms of
efficiency (CPU, Memory, I/O),D andC performed worst because they compute 2-hop
cover for a directed graph by first computing transitive closure.D* andC* performed
better because they compute 2-hop cover by first converting adirected graph into a
smaller directed acyclic graph. The cost can be reduced because the cost of computing
transitive closure is reduced, and less computational costis needed for the 2-hop cover.
C-G performed the best, and significantly outperformed the others, because it does not
need to compute transitive closure and it computes the bipartite graphs using rectangles.
Averagely,D uses as much time as 364 times ofC*’s and 70,065 times ofC-G’s.

As expected, as shown in Fig. 10, the strategy of converting adirected graph onto a
directed acyclic graph is beneficial. As aSCII solution,D* performed the best, and as a
SCI solution,C-G performed the best. In the following, we focus onD* andC-G, and
report our testing results usingD* andC-G.
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Fig. 11.Scalability Testing: Increase|V | with Variousn = |E|/|V |

5.2 Exp-2: Scalability Testing on Directed Acyclic Graphs

As discussed above, for increasing efficiency, a directed graph can be first converted
onto a directed acyclic graph to compute 2-hop cover. In thistesting, we focus on
scalability testing, forD* and C-G, over directed acyclic graphs. We use theDAG-
Graphgenerator to generate directed acyclic graphs, using various|V | and|E|. We fix
n = |E|/|V | to be 3, 4, 5 and 6, and increase|V | from 4,000 to 6,000. Such a setting is
due to the fact thatD* consumes much time to complete for larger graphs.

The results are shown in Fig. 11. In terms of quality (the sizeof 2-hop cover,H), D*
marginally outperformsC-G. As shown in Fig. 11 (a-d), whenn = |E|/|V | increases
from 3 to 6, the difference betweenC-G andD* becomes smaller in terms of the size of
the 2-hop cover. As also confirmed in other testing,C-G andD* becomes very similar
when the density of directed acyclic graphs becomes higher.In terms of efficiency,C-G
significantly outperformsD*, in particular, when the density of a directed acyclic graph
is high, e.g.n = 6 in this testing. It is worth noting thatD* consumes more 2,387 sec.
thanC-G to gain a compression ratio larger thanC-G by 2.12, about 0.539% ofT .

In Fig. 9, we also compared the code size between the 2-hop labeling and the interval
labeling [1] over directed acyclic graphs. The 8 directed acyclic graphs are labeled
|V |, |E| on the x-axis. Letn = |E|/|V |, the first four pairs are withn = 3, and the
remaining pairs are withn = 4. We compare the size by the number of units where
a unit can be an integer. Note for the interval code, 2 units for start and end numbers
and 1 unit for postnumber. The 2-hop labeling outperforms interval labeling in all the
8 graphs. As then = |E|/|V | and|V | increase, the size of the interval code increases
significantly, while the size of 2-hop cover remains similar.

5.3 Exp-3: Test Dense Graphs

We test dense directed acyclic graphs using theDAG-Graphgenerator. We fix|V | =
1, 000, and vary|E|, based on|E| = n · |V |, wheren is in range from120 to 480.
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Fig. 12.Dense Directed Acyclic Graph Testing: Vary|E| while |V | = 1, 000 is fixed

The results are shown in Fig. 12 wheren = |E|/|V | is shown in thex-axis. Note, let
|V | = 1, 000, |E| = 480, 000 whenn = 480. C-G significantly outperformsD* in
terms of efficiency, and achieves the similar quality asD* does.

We also conducted experiments onC-G using large directed graphs. We fix|V | =
100, 000 and vary|E| from 120, 000 to 180, 000. The graphs are randomly generated
by theGraph-Basegenerator [14]. The processing time decreases while|E| increases,
because the number of strongly connected components increases. When the number of
strongly connected components is larger, the generated directed acyclic graph becomes
smaller. Therefore, the processing time becomes smaller. For the fast one, we only
use 6.99 sec. to compute the 2-hop cover for a directed graph with 10, 000 nodes and
180, 000 edges.
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5.4 Exp-4: Real Graph Datasets Testing

We tested several real datasets including Ecoo157 used [1],a subset of DBLP5, which
consists of all the records for 5 international conferences, SIGMOD, VLDB, ICDE,
EDBT and ICDT, until 2004, and two XMark benchmark datasets [20] using factor 0.1
and 0.2. We only show the results ofC-G in Table 5, because the others consume too
much resources to compute. For example, for XMark dataset with factor 0.2, denoted
XMK.02, the number of nodes is is 336K, and the number of edgesis 398K. It is a
sparse graph, the compression rate achieves up to 3,565. Theprocessing time is 3,600
seconds, and the memory consumption is 223MB at most, becauseC-G does not need to
compute transitive closure, and uses rectangles. For the small real dataset Ecoo157 with
12,620 nodes and 17,308 edges,C-G only takes 0.36 seconds, and consumes 10MB
memory.

5 A snapshot ofhttp://dblp.uni-trier.de/xml/dblp.xml in Mar/2004



Data Set |V | |E| Time(sec.)Mem.(MB) # of I/Os |H | |T | |T |/|H |

Ecoo157 12,620 17,308 0.36 9.83 237 23,913 2,402,260 100.46
DBLP 140,005157,358 737.05 99.67 11,628 653,184 198,008,864 303.14
XMK.01 167,865198,412 831.87 114.66 4,866 583,7062,009,963,1983,443.45
XMK.02 336,244397,713 3,598.69 222.52 9,4181,165,6834,156,191,4113,565.46

Table 5.Performance on real graphs

6 Related Work

Agrawal et al studied efficient management of transitive relationships in large databases
[1]. The interval based labeling in [1] for directed acyclicgraphs are reexamined for ac-
cessing graph, semistructured and XML data. Kameda [10] proposed a labeling scheme
for reachability in planar directed graphs with one source and one sink. Cohen et al
studied reachability labeling using 2-hop labels [2]. Schenkel et al [18, 19] studied 2-
hop cover problem and proposed a divide-conquer approach. They attempted to divide
a large graph into a set of even-partitioned smaller graphs,and solve the 2-hop cover
problem for the large graph by post-processing the 2-hop covers for the small graphs.
The work presented in this paper suggests that we can computea large entire graph
efficiently without the need to divide a graph into a large number of smaller graphs.
Also, when there is a need to compute a large graph using the divide-conquer approach
[18, 19], using our approach, it only needs to divide a graph into a rather small number
of large graphs. In [22], we proposed a dual labeling scheme,in order to answer reach-
ability queries in constant time for large sparse graphs. The work in [22] is different
from the work presented in this paper. In this paper, we focuson computing 2-hops for
arbitrary graphs which can be either sparse or dense. Several numbering schema were
proposed for processing structural joins over tree structured data (XML data) including
region-based [25, 24, 17, 12], prefix-based [3, 16, 11, 13, 21], and k-ary complete-tree-
based [15, 23].

7 Conclusion

In this paper, we studied a novel geometry-based algorithm,calledMaxCardinality-G,
as a set cover I solution, to solve the 2-hop cover problem. Our algorithm utilizes an
efficient interval based labeling for directed acyclic graphs, and builds up a reachabil-
ity map which preserves all the reachability information inthe directed graph. With
the reachability map, our algorithm uses operations against rectangles to solve the 2-
hop cover efficiently. As reported in our extensive experimental studies using synthetic
datasets and large real datasets, our algorithm can compute2-hop cover for large di-
rected graphs, and achieve the similar 2-hop cover size as Cohen’s algorithm can do.

Acknowledgment: The work described in this paper was supported by grant from
the Research Grants Council of the Hong Kong Special Administrative Region, China
(CUHK418205).

References

1. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive relationships
in large data and knowledge bases. InProc. of SIGMOD’89, 1989.



2. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via 2-hop
labels. InProc. of SODA’02, 2002.

3. E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. In Proc. of PODS’02,
2002.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to algorithms. MIT
Press, 2001.

5. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications.SIAM J. Comput., 18(1):30–55, 1989.

6. A. Guttman. R-trees: A dynamic index structure for spatial searching. InProc. of SIG-
MOD’84, 1984.

7. Y. E. Ioannidis. On the computation of the transitive closure of relational operators. InProc.
of VLDB’86, 1986.

8. D. S. Johnson. Approximation algorithms for combinatorial problems. InProc. of STOC’73,
1973.

9. R. Johnsonbaugh and M. Kalin. A graph generation softwarepackage. InProc. of
SIGCSE’91, (http://condor.depaul.edu/rjohnson/algorithm), 1991.

10. K. Kameda. On the vector representation of the reachability in planar directed graphs.In-
formation Processing Letters, 3(3), 1975.

11. H. Kaplan, T. Milo, and R. Shabo. A comparison of labelingschemes for ancestor queries.
In Proc. of SODA’02, 2002.

12. D. D. Kha, M. Yoshikawa, and S. Uemura. An XML indexing structure with relative region
coordinate. InProc. of ICDE’01, 2001.

13. W. E. Kimber. HyTime and SGML: Understanding the HyTime HYQ query language 1.1.
Technical report, IBM Corporation, 1993.

14. D. E. Knuth.The Stanford GraphBase: a platform for combinatorial computing. ACM Press,
1993.

15. Y. K. Lee, S. J. Yoo, and K. Yoon. Index structures for structured documents. InProc. of
ACM First International Conference on Digital Libraries, 1996.
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