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Abstract. The need of processing graph reachability queries stems finany
applications that manage complex data as graphs. The afipfis include trans-
portation network, Internet traffic analyzing, Web navigat semantic web, chem-
ical informatics and bio-informatics systems, and compuitgon. A graph reach-
ability query, as one of the primary tasks, is to find whether given data ob-
jects,u andv, are related in any ways in a large and complex dataset. Fgrma
the query is about to find if is reachable from: in a directed graph which is
large in size. In this paper, we focus ourselves on buildimgazhability label-
ing for a large directed graph, in order to process reaciyahbilieries efficiently.
Such a labeling needs to be minimized in size for the effigieri@answering the
queries, and needs to be computed fast for the efficiencyroftnecting such a
labeling. As such a labeling, 2-hop cover was proposed fatrary graphs with
theoretical bounds on both the construction cost and tleeddithe resulting la-
beling. However, in practice, as reported, the constractiost of 2-hop cover
is very high even with super power machines. In this papemprepose a novel
geometry-based algorithm which computes high-qualityo@-hover fast. Our
experimental results verify the effectiveness of our tépies over large real and
synthetic graph datasets.

1 Introduction

Consider a reachability query querying whether a nogereachable from nodein a
large directed graplG;. There are several possible yet feasible solutions forieffity
answering such a query, as indicated in [2]. Those solufiteiade i) maintaining the
transitive closure of edges, which results in high storagesamption, and ii) comput-
ing the shortest path fromto v over such a large graph on demand, which results high
query processing cost. A 2-hop reachability labeling, ¢vop-cover, was proposed by
Cohen et al, as a feasible solution, to answer such readiahikries [2]. The key is-
sue is how to minimize such a 2-hop cover, because the minigiop cover leads to
the efficiency of answering reachability queries. The peabls shown to be NP-hard,
because minimum 2-hop cover is a minimum set cover problerhe@ et al proposed
an approximation solution. The theoretical bound on the siz2-hop cover is also
provided. Despite the excellence of the theoretical bounthe time complexity, the
cost for computing the minimum 2-hop cover is high when depiivith large graphs.
In [19], Schenkel, Theobald and Weikum run Cohen et al'srétigm on a 64 processor



Sun Fire-15000 server with 180 gigabyte memory for a subc&R1LP which con-
sists of 344,992,370 connections. It took 45 hours and 23it@inusing 80 gigabytes
of memory to find the 2-hop cover which is in size of 1,289,980ies. The long con-
struction time makes it difficult to construct such a 2-hoperdor large graphs.

The main contribution of our work in this paper are summatizelow.

— We propose a set cover | solutioB€)) instead Cohen et al’s set cover Il solution
(SCI) [8], where SCI minimizes the number of subsets in a set cover &aul
minimizes the overlapping among subsets in a set cover. \&& skiidences that
SClcan achieve a similar satisfactory level®&I/ as to minimize the 2-hop cover
for a large graph, and at the same time can compute 2-hop etiicently.

— We propose a novel geometry-based algorithm to furtherangpthe efficiency of
computing 2-hop cover. The two main features of our solutiom given below.
First, we do not need to compute transitive closure as reduir all algorithms
that need to compute 2-hop. Second, we map the 2-hop covaleprmnto a two-
dimensional grid, and compute 2-hop using operations agegatangles with help
of a R-tree.

— We conducted extensive experimental studies using diffeg@ph generators, and
real datasets, with different parameter settings. Oullteesupport our approach as
it can significantly improve the efficiency of finding 2-hopveo for large graphs.

The remainder of this paper is organized as follows. Se@igives the definition
of the 2-hop cover problem. Section 3 discusses our mativaif solving the 2-hop
cover problem using a set cover | solution [8] instead of #teever Il solution used in
Cohen et al's study [2]. Our work is motivated by the main liegments of the 2-hop
cover problem: minimization of the 2-hop cover and minintia of processing time.
Section 4 discusses a new geometry-based approach as aesel solution to the 2-
hop cover problem. Experimental results are presenteddtid®es followed by related
work in Section 6. Finally, Section 7 concludes the paper.

2 Problem Definition

The 2-hop reachability labeling is defined in [2]. We introdlit below in brief. Let
G = (V,E) be a directed graph. A 2-hop reachability labeling on gréphssigns
every nodey € V alabelL(v) = (Lin(v), Lout(v)), WhereL;,, (v), Loy (v) € V such
as every node in L;,(v) connects to every nodein L, (v) via the nodey. A node
v is reachable from a nodg denoted: ~» v, if and only if Ly, (v) N Ly (v) # 0. The
size of the 2-hop reachability labeling over a graptV, E), is given as, below.

L= Z |Lm(v)| + |Lout(v)| 1)
veV(G)

In order to solve the 2-hop reachability labeling, Cohenleireroduced 2-hop
cover, which is given below [2].

Definition 1. (2-hop cove) Given a directed grapltz = (V, E). Let P, be a set
of paths from node: to nodev in G, and P be a set of all suclP,.,, in G. A hop,



h.,, is defined a%,, = (pu,u), wherep,, is a path inG andu is one of the endpoints
of p,,.. A 2-hop cover, denoteH, is a set of hops that coverB, such as, if node is
reachable from node then there exists a paghin the non-empty,,., where the path
p is concatenation gf,, andp,,, denoteg = p,p,,, andh,, = (p,,u) andh, = (p,,v).

The 2-hop reachability labeling can be derived from a 2-hmpec[2]. In addition,
the size of the 2-hop coveif|, for a graphG, is the same as that of 2-hop reachability
labeling (H| = L).

The 2-hop cover problem is to find the minimum size of 2-hopetder a given
graphG(V, E), which is proved to be NP-hard [2]. Cohen et al show that adyree
algorithm exists to compute a nearly optimal solution fag #xhop cover problem.
The resulting size of the greedy algorithm is larger thandigmal at mosO (log n).
The basic idea is to solve the minimum 2-hop cover problemraganum set cover
problem [8]. Note: in the corresponding minimum set coverpem, a set is a set of
edges.

We illustrate Cohen et al’s algorithm in Algorithm 1. We ciéliMaxDSCovering
In Algorithm 1, it initializes the 2-hop coveH (line 1), and computes the transitive
closure, T, for the given grapl (line 2). Here,T is treated as the ground set of the
minimum set cover problem. The main body of the algorithm ghéle loop, which
repeatedly finds hops unfil becomes empty (line 3-14). The 2-hop cover is returned
in line 15. In line 5-10, it finds a densest bipartite graph,which has nodev as its
virtual center, by calling a functiodenSubGraphn denSubGraphhe densest bipartite
graph is constructed, based on a nadén two main steps.

— Construct a bipartite grapBc (Ve, Ec) whereVe = Ve, UV, ,,, based on node

out?!

w, such as
Ve, ={ul (u,w) € THU{w} 2)
Ve ={v | (w,0) € THU {w} 3)
and
Ec =Ve,, x Ve, (4)

The sets)¢,,, andV,, ,, are all connected via the virtual centerrespectively.
— Find the densest bipartite graph, denof®#d’, E), whereV = V,,, U V,,,, from
B¢, such as
|[ENT|
max —
VinCVey, |Vm| + |Vout|

Vout Ve 04
ECEc

(5)

whereT” is the set of uncovered edges. Note: finding the minimum set v
equivalent to find the densest subgraph [2], as illustratedq. (5). As a densest
subgraph problem, it can be solved in polynomial time [5].

The candidate bipartite graghwith the highest score (Eq. (5)), after checking every
node inG, is identified after line 10. In line 11-12, new hops are adidéal the 2-hop
cover, based off. After it, the set of edges df, denotedt(5) will be removed from
T



Algorithm 1 MaxDSCoveringG)

Input:  graph,G(V, E).

Output: 2-hop coverH.

1: H —Q;

2: T — T «— {(u,v) | Puv # 0};

3: while T” # ( do

4: T —0;

5. forall we V do

6: B «+ denSubGraglw, T, T") with a scorec,,; {B(V, E) is a bipartite graph with
V=VnU Vout-}

7. if c,, > 7 then

8: Vp — W, T < Cu;, B B;
9: end if

10: end for

11: forall u € Vi, of Bdo H — H U {(u ~ v, u)};
12: forall v € Vour of Bdo H «— H U {(vp ~ v,v)};
13 T T\ E(B);

14: end while

15: return H;

3 A Set Cover | Solution

Cohen et al. solve (approximate) the minimum 2-hop coveblpra as a minimum set
cover problem with a theoretical bound on the time compyexn*) wheren is the
number of nodes in the graph. However, it is challenging to compute such a 2-hop
cover for very large graphs because the algorithm is CPUhéite as reported in [18,
19]. Also, it needs to precompute the transitive closurectvinequires large memory
space. Recall, in [19], Schenkel, Theobald and Weikum rume@et al's algorithm on
a 64 processor Sun Fire-15000 server with 180 gigabyte mefooa subset oDBLP
which consists of 344,992,370 connections. It took 45 hand 23 minutes using 80
gigabytes of memory to find the 2-hop cover which is in size,2B9,930 entries.

The minimum set cover problem usedMaxDSCoverings called a minimum set
cover Il problem, denote&Cl|, in [8]. SCllis to find a set cover which has the least
overlapping, and shares the same goal as 2-hop cover preblen{8], Johnson also
gave a set cover | problem, denot8&/, which is to minimize the cardinality. Here,
consider a set of subsefs, Sz, - - , Sy, over a finite setS (= U,.S;). The minimum
set cover | §C)) is to find a smallest set of sets, denotgdsuch asJ;S; = S for
S; € 8. The two set cover problemSClandSClI, are different. The optimal solution
for one may not be the optimal solution for the other.

In this paper, we show that the minimum 2-hop cover problemimEasolved using
SCl effectively. By effectiveness, we mean that the size of p-bet identified bySCI
is very similar to the size of 2-hop set identified BZII, in practice, using greedy
algorithms, when handling large graphs.

We propose an algorithm calleaxCardinality The algorithm is the same as
MaxDSCoveringafter replacing Eq. (5) with the following equation Eq. (&) find-
ing a bipartite subgraptB(V, E) from a bipartite graphBe(Ve, Ec) whereV =
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Fig. 1. SCllvs SClover a Directed Acyclic Graph¥'| = 2,000, |E| = 4, 000)

Vin U Vout. As the name of the algorithm indicates, it is to maximize ¢hedinality
of the edges (uncovered paths) in each bipartite graph.

max |[ENT| (6)

VinCVoy,

Vour TV,
ECEc

whereT” is the uncovered set.

We show the similarities and differences between the twotsols, namelySC/
and SCII, in Fig. 1, using a random grapti(V, E') where|V| = 2,000 and |E| =
4,000, generated by a graph generator [9]. In Fig. 1, it compafagCardinality(a
SClsolution) withMaxDSCoverinda SCllsolution). The figures (a)-(d) are faxD-
SCoveringand the figures (e)-(h) are fdfaxCardinality Note: both algorithms are the
same as shown in Algorithm 1 except tidaxDSCoveringises Eq. (5) andaxCar-
dinality uses Eq. (6) for identifying a subgraph.

— In Fig. 1 (a) and (e), we show the density of the subgraph faumdaxCardinality
andMaxDSCoverindB(V, £) in Algorithm 1). The density (y-axis) i&€|/(|Vin |+
[Vout|) whereV = V;,, UV, Itis important to note thaWaxCardinalitydoes not
use it to compute, but uses it to measure its density pettit@rdn comparison
with MaxDSCovering
MaxDSCoveringlecreases monotonically, because it always finds the besestke
subgraph per iteration (Fig. 1 (a)YlaxCardinalitydecreases globally, but shows
fluctuation patterns (Fig. 1 (e)), because it cannot find #& densest subgraph
per iteration. However, one very important observatiomé MaxCardinalitycan
find a more dense graph than former selected ones in one afltbeihg iterations
after it misses a densest graph in some iteration. If we coetpa two subfigures,



MaxCardinalitysometime outperform®axDSCoveringn many iterations for this
reason.

— In Fig. 1 (b) and (f), we show the accumulated compressiaa,rd; |/ H;, where
T; is the transitive closure that has been covered alreadyeattthiteration, and
H; is the 2-hop cover fof;. Both figures are almost the same. It shows that the 2-
hop cover can be solved effectively using&lsolution. For this graph, the size of
the transitive closurdl, is |T'| = 24, 888. The sizes of the 2-hop covers found by
MaxDSCoveringand MaxCardinalityare, 6,840 and 7,089. The difference is 249.
The compression rate of the 2-hop coverdWgxDSCoveringagndMaxCardinality
are,0.27 (6,800/248, 88) and0.28 (7, 089/24, 888).

— In Fig. 1 (c) and (g), we show the coverage of the graph up ta-theiteration,
|T;|/|T}|, whereT; is the transitive closure being covered at tHé iteration, and
T’ is the transitive closure that has not been covered up to-théteration. Both
share the similar trend.

— In Fig. 1 (d) and (h), we show the CPU time spent in every iteratDue to the
difference betwee$CI (Eq. (5)) andSClI (Eq. (6)), MaxCardinalityspends much
less time tharMaxDSCovering

The above discussions show tha&@/solution can effectively and efficiently solve
the minimum 2-hop cover problem.

4 A Fast Geometry-Based Algorithm for the Set Cover | Solutio

In this section, we show that we can significantly improvedffieiency of MaxCardi-
nality (a SClsolution) by solving it over a 2-dimensional space usinga@operations
against rectangles.

The outline of our approach is given below. First, for a gidinected graplt, we
construct a directed acyclic graph, denofed Second, we compute the 2-hop cover for
the directed acyclic grapfi| . Third, we compute the 2-hop cover for the directed graph
G using the 2-hop cover obtained f6t, in a simple post-processing step. Below, we
discuss the first step, and the third step and will discussebend step in the following
subsections.

Directed acyclic graph construction Given a directed grapl(V, E), we identify
its strongly connected components,, Cs, - - - efficiently, in the order ofO(|V| +
|E|) [4]. Note: any two nodes are reachable if they are in the saroagly connected
component(;. The directed acyclic grap&| (V|, E|) is constructed as follows. A
nodev € V| represents either a strongly connected comporgnor a node inG. If

v represents a strongly connected compoiigntve randomly select one of the nodes
in C;, denoted’, as the representative Iy . All other nodes inC; will not appear in
V. All the edges between the nodes in the strongly connectegpenentC; will not
appear inF|; all edges going into/from the strongly compone7it, will be represented
as edges going into/from the nodein E|. If v represents a node id, which is not
involved in any strongly connected component, the nodeheilhdded intd/|, and the
corresponding edges going into/franappear in&| . The conversion ofs to G| can be
done as the same time when finding strongly connected compoag a by-product.



Generation of 2-hop cover forG upon the 2-hop cover forG|: Recall in a strongly
component’;, any two nodesy andwv, are reachable such as~ v andv ~» w.
Therefore, they share the same 2-hop. Suppose that we ked@viibp for a node in

a strongly connected componeat, all the nodes irC; should have the same 2-hop.
The 2-hops can be simply added for connecting nodes in aesstigingly component.

4.1 Computing 2-hop Cover for a Directed Acyclic Graph

In the following subsections, we explain how to compute p-kover for a directed
acyclic graph. The main techniques are: 1) to map a readtyadisdtweenu ~» v onto

a grid point in a 2-dimensional grid, 2) map a bipartite grath a virtual center into
rectangles, and 3) compute the densest bipartite grapbdlmasEq. (6), as to compute
the largest area of rectangles. Note: R-tree can be usedit e last step.

Below, in Section 4.2, we introduce an efficient approachwhijch computes an
interval labeling for reachability over a directed acydi@aph. Note: there is no need
to compute transitive closure. We will discuss space corifpldetween the interval
labeling and 2-hop labeling in our experimental studiesSeuotion 4.3, we discuss a 2-
dimensional reachability map, which is constructed usigimterval labeling [1]. The
reachability information is preserved completely in thepra Section 4.4, we give our
algorithm, and explain it using an example.

4.2 An Interval Based Reachability Labeling for Directed Ag/clic Graphs

Agrawal et al [1] proposed a method for labeling directedcticygraphs using inter-
vals. The labeling is done in three steps for a directed acyehph,Gp. 1) Con-
struct an optimum tree-covef. An optimum tree-cover is defined as to minimize
the number of intervals. 2) Every node,in 7 is labeled using an interng$, e]. A
nodewv has a uniquepostorder numberdenotedpo, which is the number assigned
following a postorder traversal of the tree starting fronirhe e value in[s, ¢] for a
nodew is the postorder number of the nodeand thes value in the interval is the
smallest postorder number of its descendants, whetee if v is a leaf node. 3) Af-
ter 7 is labeled, it examines all nodes @fpin the reverse topological order. During
the traversal, for each node add all the intervals associated with if there exists
an edge(u, v), into the interval associated with. An interval can be eliminated if
it is contained in another. Let, be a list of intervals assigned to a node Sup-

pose there are two nodesandv wherel, = {[s1,e1],[s2,e2], - ,[sn,en]}, @and
I, = {[s},el], [sh, e5], - -, [sh,, er,] }- There exists a path fromto v iff the postorder

of v isin an interval]s;, e;], of w.

4.3 A 2-Dimensional Reachability Map

First, we show how to construct a 2-dimensional reachghiiap, M. With the help of
M, we want to checle ~ v in a directed acyclic grapld; |, quickly, using a function
f(u,v), such asf (u,v) = 1iff uw~ v, andf(u,v) = 0iff u % v.

The construction of the reachability map is done using tweriral labelings ob-
tained on the directed acyclic grapH, (V|, E| ), on which we are going to compute



G1(V1, Er)

Fig. 2. A directed graph, and its two directed acyclic grapig,andG+

‘w | Gy | Gy
[poi(w)[  Ij(w) [[por(w)[ I (w) |
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Table 1. A Reachability Table foG| andGy

its 2-hop cover, and another auxiliary directed acyclipbrdr; (V4, E; ), respectively.
Note: G;(V;, E7) can be easily obtained frod(V|, E|), such asV; = V|, and a
corresponding edg@, ) € E; if (u,v) € E|. In brief, for a nodey, the former can
tell which nodes: can reach, and the latter can tell which nodes can reatdst. For
the pair of graphs(z; andG+, we compute the postorder numbesg (andop;) and
interval labels {; andI;), using Agrawal et al's algorithm efficiently [1]. We stolresim
in a table, called aeachability table

Example 1 As a running example, a random directed gragh,(V1, E1), with 12
nodes and 19 edges, is shown in Fig. 2 (a). There are two dirarannected com-
ponents. One is among nodesand5, the other is among nodds6 and?7.

Consider the example gragh; (Fig. 2 (a)). Its two directed acyclic graphs,
and G, are shown in Fig. 2 (b) and (c), respectively.df, there are only 9 nodes
out of 12 nodes irG,, because there are two strongly connected components.sOne i
among nodes 5 and 10, and the other is among 1, 6 and 7. We Sdect 1 as the
representatives for the former and latter strongly coredecbmponents id7;. The
corresponding reachability table is shown in Table 1. Inl@ah the first column is
the node identifiers id7; (Fig. 2 (a)). The second and third columns are the postorder
number and the intervals fdr , and the fourth and fifth columns are the postorder
number and the intervals fa¥;.

We can virtually represent the reachability table, as ann-grid reachability map
M, wheren = |V|| = |V;|. The x-axis represents the postorder numbers of the nodes



in the graphy|, and the y-axis represents the postorder numbers of the sades in
the graphG;. Note, the postorder numbers are in the rang& of]. Given a pair of
nodesyu andv in G, a functionf (u, v) maps it onto a gridz(v), y(v)) in M, where
z(w) = op;(w) andy(w) = opr(w). Here,op, (w) represents the postorder number
of w in G| andop; (w) represents the postorder numbewoin G;. The grid value of
f(u,v)is 1, if u ~ v, otherwise 0.

The reachability mapg/ for G, (Fig. 2 (b)) is shown in Fig 3, where a shaded grid
shows a reachability ~ v. The details for all possible ~ v, such as: # v, G|, are
given in Table 2. For examplg,~ 9, is mapped ont¢4, 5) in M, and(4, 5) represents
3 ~» 9, because it is shaded.

i
o

(p [f() Ip /() [Ip [f(»)]
0~ 1 [(1,4)[[0~ 3 [(6,4)][0~ 4 (2,4)
0~5 [(5,4|[0~38 [(7,1)|[0~9 [(4,4)
0~ 11](3,)[[0~ 12|(8, )[[T~ 11 |(3,3)
3~1 (1,53~ 42 [(2,5)|3~5 [(55)
39 (4,53~ 11[(3,5)]|5~9 [(4,06)
5 11](3,0)[[8 < 1 [(1, D[]8~ 11 |(3,1)
95 11[(3, D12 < 1[(L, D)[[12 ~ 11[(3, 2)

PN WA OO N © ©

12 3 456 7 8 9 10

Fig. 3. Reachability Map Table 2.All u ~ vin G|

Second, we show that, for a nodeas a virtual center, all the the nodes thatan
reach and the nodes that can reaghcan be represented as rectangles in the reach-
ability map, M. We explain it below. Given a node € G,. Suppose thaf| (w) =
([517 61], [527 62]5 T [Sm en]) and[T(w) = ([5/15 ell]a [S/2a eIQ]a T [S;nv elm]) Itis im-
portant to note that a pajs;, ¢;] in I (w) indicates that the corresponding nodes in
[si, e;] can be reached from and a paifs}, €}] in I;(w) indicates that the correspond-
ing nodes ins;, e;] can reachv. Therefore, all the possible pairs(ef, ;] and([s, €]
represent the reachability with as the center.

We define a functioRect(w) which maps the all reachability, with as the virtual
center, ontar x m rectangles inM/, such ag((s;, ), (e, €;)) for everyl <i < n
and1 < j < m. Note: a rectangle being contained in another can be eltedndwo
adjacent rectangles can be merged into a single rectangle.

The rectangular representation of the reachability of time modes inG| (Fig.

4 (b)) are shown in Fig. 4. For example, consider nade 1 in G|. The cross in Fig.
4 (b) represents node = 1 asl ~ 1 at the grid(z,y) = (1,3) in M. Here,I| (1) has
two intervals,[s1, e1] = [1,1] and[sz, e2] = [3, 3], andI; (1) has an interval]s], ¢}] =
[1, 5]. The two rectangular representations becdfae, s} ), (e1,€})) = ((1,1),(1,5))
and((sz, Sll)v (e2, 6/1)) =((3,1),(3,5)).

Third, we show thatRect(w) represents a bipartite grapBc(Ve, Ec) C Gy,
which hasw as its virtually center, in the reachability ma,. Recall:Vo = Vi, U
Ve, Vin (EQ. (2)) andV,,,: (EQ. (3)) can be computed as follows.

Ve, = gr(Rect(w)) (7
Ve = g1(Rect(w)) ®)

out



10 10 10
9 9 9
8 8 8
7 7 7
6 6| 6|
5| 5 5
4| E— 4 4.
3|8 : 3 318 H
2 : 2 2 :
1 1. ] 1
0| N [0} IR 0| : N
0123456789 10 0123456789 10 012345678910
b)yw=1 Cc)w=3
10 10 10
9 9 9|
8 8 8
7 7 7
6 6 6
5 5 5],
4 4 4|
3 3 3
2 2 2] .
1 1 1|
0 Lo 0 . N ol + ¢ ¢ L
012d34567s910 0123456789 10 012345678910
w=4 e)w=>5 w =38
o @ 10»() 10»(f)
9 9l ... 9
8 8 8
7 7 7
6 6 6
5 5 5] .
4 4 4|
3 | 3 3|
2 2 2|
1 ) 1
0 : : 0 N o i it H
0123456789 10 0123456789 10 0123456782910
@w=9 (h)y w=11 (i) w=12

Fig. 4. Rectangular representations of bipartite graphs for nadesG, .

whereg, andg; are functions that return a set of node identifiers represeas pos-
torder numbers in thg-axis andc-axis. We explain the two functiong, andg;, using
an example.

Reconsider node = 1 againinG, (Fig. 2 (b)).Rect(w) represents two rectangles,
((1,1),(1,5))and((3,1), (3,5)). Rect(w) coverse-values inX = {1, 3} andy-values
inY = {1,2,3,4,5}. As shown in Table 1V,,; = {1,11}, becausd = op; (1)
and11 = opl_l(S). In a similar fashionV;,, = {8,12,1,0, 3}, because every value,
k € Vi, is obtained by a valuke Y, such as: = op;(I). The corresponding bipartite
graph is shown in Fig. 5.

Fourth, we show that we can compute densest bipartite gregihg rectangles. Let
B¢, and B¢, be two bipartite graphs for nodes andw,. We have the following three
equations.

Rect(Be, N Be,) = Rect(Be, ) N Rect(Be,) 9
Rect(Be, U Be,) = Rect(Be, ) U Rect(Be,) (10)
Rect(Be, — Be,) = Rect(Be, ) — Rect(Bc,) (11)

The above equations state that the rectangle of uniorgietgon/difference of two
bipartite graphs is the union/intersection/differencette rectangles of the two bi-
partite graphs. Based on them, we can fast com@@éusing rectangles. We omit
the proof, because it is trivial. An example is shown in FigH&re, B¢, is mapped

onto ((z1,41), (x2,y2)) by Rect(Bc,), and Be, is mapped ontd(xs, y3), (€4,v4))
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Fig. 5. A bipartite graph foro = 1in G| Fig.6. Bc, — Be,

by Rect(Be,). Rec(Be, — Be,) is the two rectangles(z1,y1), (3 — 1,y2)) and
((I’g, Ya + 1)7 (:EQa y2))

4.4 The Algorithm

We discuss our new fast 2-hop algorithm, callddxCardinality-G because it can re-
sultin the same set of 2-hop coverdaxCardinality The efficiency oMaxCardinality-
G is achieved due to the introduction of reachability map dneddperations over rect-
angles (Eg. (9), (Eq. (10) and (Eqg. (11)). We do not need topedenbipartite graphs,
Be, with a nodew as its virtual center, and we do not need to compute seteddst
we usel; and/; to obtainBc, and use rectangles to determine the densest subgraph
based or5ClI

In MaxCardinality-G(Algorithm 2), it takesG as an input directed graph. It con-
structs a directed acyclic gragh, for G (line 1), and computes its reachability table
and its reachability map (line 2). The 2-hop couér,, will be obtained after line 12. In
line 13, it computes a 2-hop cover for the given graphased on the 2-hop cové,,
for G|. The 2-hop covefd is returned in line 14. The main body bfaxCardinality-G
is to compute the 2-hop covéf| for the directed acyclic grapty,. For computing
H\, itinitializes H| in line 3. Also, in line 4, it initializesA as empty which is used to
maintain all the rectangles covered by the algorithm. Aaegte represents a bipartite
subgraph inG|. In line 6, it finds the densest bipartite subgraph, with nedas its
center inG |, in terms of Eq. (5), using operations (Eq. (9), (Eq. (10) &&d. (11))
upon its corresponding rectanglé&ct(w), over the reachability map/. In line 6, it
finds the largest area dtect(w) — A. Suppose the largest rectangle is for naden
line 7-9, it add hops inté{, . Afterward, it adds the covered rectangles idigline 10),
and removes node from the set of nodeg, (line 11).

We explainMaxCardinality-Gusing the directed acyclic graph examgle (Fig.
2) (b). Below, we show the details of the algorithiiaxCardinality-G in comparison
with its counterpart algorithmaxCardinality The 4 bipartite graphs, generated in the
4 iterations of the algorithrMaxCardinalityare shown in Fig. 8, using Eq. (6). In the
1st iteration, it finds a bipartite graph with = 3 as its virtual center (Fig. 8 (a)); in the
2nd iteration, it finds a bipartite graph with = 1 as its virtual center (Fig. 8 (b)); in
the 3rd iteration, it finds a bipartite graph with = 9 as its virtual center (Fig. 8 (c));
and in the 4th iteration, it finds a bipartite graph with= 0 as its virtual center (Fig.
8 (d)).

Recall the reachability map, which preserves the compéstetrability information
is given in Fig. 3. Therefore, the algorithiaxCardinality-Gneeds to find all rectan-
gles Rect(w), for nodew, that cover all the valid points in the reachability map. We



Algorithm 2 MaxCardinality-G

Input: agraphG(V,E)
Output: a 2-hop coverH

. Construct a directed acyclic gragh (Vi, E|);

: Compute the reachability table, and consider it as aalireachability map;
H, «— 0 {2-hop cover foiGG| }

A — (; {covered rectanglés

: while V| # () do

letw be the node with the max areaBtct(w) — A; {Densest subgraph in terms &I}
letw andv be two nodes i | ;

forall (z(w),y(u)) € Rect(w)do H| «— H| U {(u~> w,u)};

forall (z(v),y(w)) € Rect(w) doH| «— H| U{(w~> v,v)};

A — AU (Rect(w) — A);

Vi = Vi\{wh

: end while

: ComputeH over H, for G;

D return H;
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Fig. 7. MaxCardinality-GSteps forG

show how it is done using Fig. 7. In Fig. 7 (a), all the shadddfgare the valid points;
the cross point show the node= 3, which is the same node selected in the 1st iteration
of MaxCardinalit(Fig. 8 (a)); and the striped points shows the largest arézof(w),

for w = 3, among all the other nodes. Thct(3) corresponds to Fig. 8 (a). After this
step, the covered ared, is shown as dark points in Fig. 8 (b)-(d)). In the second it-
eration, the algorithmMaxCardinality-Gwill select a nodav = 1 which has largest
area ofRect(w) — A. As shown above, the algorithiaxCardinality-Ginds the exact
bipartite graphs as the algorithfiaxCardinalitybut performs more efficiently, because
it only needs to use operations against rectangles. Thefbapd in every iteration are
given in Table 3.

We give implementation details for the algorithWfexCardinality-G The reacha-
bility table for the directed acyclic grapgH is maintained in memory. The rectangles
for the covered areasg), are maintained in a R-tree [6]. The area of a nadwith
Rect(w) — A is done as follows. 1) us®ect(w) to retrieve all the areas il that
overlap withRect(w). 2) Suppose there arerectanglesRy, - - - , R, returned. It does
Rect(w) — R; forall 1 < i < n. 3) The area of th&ect(w) — A can be computed.
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5 Experimental Studies

We conducted extensive experimental studies to study ttierpgance of the three al-
gorithms, namely, the algorithMaxDSCoveringMaxCardinality andMaxCardinality-
G. We have implemented all the algorithms usidg+. In the following, denote them
asD, C andC-G, respectively.

Both D andC compute set cover, for a gragh(V, E), upon its transitive closure,
T, whose size can be very large, in the worst ca3g)’|?). We compute the transi-
tive closure using the algorithm [7], and precompute albbiipe graphsBe (Ve, Ec)
which hasw as its center. All those precomputed bipartite graphs aredtin a B-tree
on disk. For a given node € G, we can efficiently retrieve its corresponding bipartite
graphB¢ from disk through a simple buffering mechanism from the &tr-oD and
C, all the other data, except the transitive closiiteare maintained in main memory.
We also implemented a variation fBrandC by the procedure of DAG conversion, that
is: 1) converting a directed graph into a directed acyclapgy, 2) finding 2-hop cover
for the directed acyclic graph usimandC respectively, and 3) generating 2-hop cover
for the directed graph using a simple post-processing beged on the 2-hop obtained
in step 2). We denote them & and C*, respectively. FoIC-G, we maintain data
structures in main memory where possible including thehahitity table and R-tree.
We use Antonin Guttman’s R-tree cdd&Ve also implemented a ranking adopted from
[19], which is used to reduce the cost for computing densipsirtite graphs in every
iteration. Table 4 summarizes the processing involved @ @égorithm.

; MaxDSCovering MaxCardinality 00k | o
Processing Involvecy
‘ [D] D [[C]C C-G | § o
Transitive Closure o
Computation 4 4 VIV x 5 %
DAG Conversion [ x V4 x|V vV 100K
Geometry-based % « | % v
Approach 4K,12K 5K,15K 6K,18K 7K, 21K 4K,16K 5K,20K 6K,24K 7K,28K
Graphs
Table 4. Algorithms in Testing Fig. 9. Interval-Code vs 2-Hop Cover

We generated various synthetic data using two graph gemenamely, the random
directed graph generat@raphBaseleveloped by Knuth [14] and the random directed
acyclic graph generatd?AG-Graphdeveloped by Johnsonbaugh [9]. We vary two pa-
rameters|V| andE|, used in the two generators, while the default values foother
parameters. We also tested several large real graph dataset

4 http://web.archive.org/web/20020802233653/es.ucsc.e du/"tonig/
rtrees



We conducted all the experiments on a PC with a 3.4GHz procassi 2GB mem-
ory running Windows XP.
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Fig. 10. Compare of 5 Algorithms over Directed Graphs

5.1 Exp-1: Comparison of the Five Algorithms over Directed Gaphs

Because the focus of this paper is to compute 2-hop coverdioergl directed graphs,
we first generate 10 random directed graphs ugdngphBasewhere|V| = 5,000
and |E| = 10,000, with different seeds. We compare five algorithms, namely, t
SCll algorithms and thre&Cl algorithms. NoteD and D* are aSClI solution, and
C, C* andC-G are aSCI solution. We report the size of 2-hop covéf, processing
time (sec), memory consumption (MB), and the number of |/Geases. Figure 10
shows the details fob, C, D*, C*, andC-G in that order, using 10 random directed
graphs. In terms of quality, they all performed in a similaywAll algorithms achieved
the similar size of 2-hop cover and hence the similar congwesratio. In terms of
efficiency (CPU, Memory, I/O)D andC performed worst because they compute 2-hop
cover for a directed graph by first computing transitive gtesD* and C* performed
better because they compute 2-hop cover by first convertidigeated graph into a
smaller directed acyclic graph. The cost can be reducedisedae cost of computing
transitive closure is reduced, and less computationalisosteded for the 2-hop cover.
C-G performed the best, and significantly outperformed thersthmcause it does not
need to compute transitive closure and it computes thetitipgraphs using rectangles.
Averagely,D uses as much time as 364 time<ifs and 70,065 times af-G's.

As expected, as shown in Fig. 10, the strategy of converttigegted graph onto a
directed acyclic graph is beneficial. ASS€II solution,D* performed the best, and as a
SClsolution,C-G performed the best. In the following, we focus Bh andC-G, and
report our testing results usimf andC-G.
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Fig. 11. Scalability Testing: Increas@’| with Variousn = |E|/|V/|

5.2 Exp-2: Scalability Testing on Directed Acyclic Graphs

As discussed above, for increasing efficiency, a directeglgican be first converted
onto a directed acyclic graph to compute 2-hop cover. In tibsing, we focus on
scalability testing, foiD* and C-G, over directed acyclic graphs. We use tDAG-
Graphgenerator to generate directed acyclic graphs, usinguafid and|E|. We fix

n = |E|/|V|tobe 3, 4,5 and 6, and incred3d from 4,000 to 6,000. Such a setting is
due to the fact thad* consumes much time to complete for larger graphs.

The results are shown in Fig. 11. In terms of quality (the siZ&-hop coverH), D*
marginally outperform€-G. As shown in Fig. 11 (a-d), whem = |E|/|V| increases
from 3 to 6, the difference betwe€&hG andD* becomes smaller in terms of the size of
the 2-hop cover. As also confirmed in other testi@egG andD* becomes very similar
when the density of directed acyclic graphs becomes higfhsrms of efficiencyC-G
significantly outperform®?#, in particular, when the density of a directed acyclic graph
is high, e.gn = 6 in this testing. It is worth noting thdd* consumes more 2,387 sec.
thanC-G to gain a compression ratio larger tharG by 2.12, about 0.539% df .

In Fig. 9, we also compared the code size between the 2-helidgland the interval
labeling [1] over directed acyclic graphs. The 8 directeyicic graphs are labeled

[V],|E| on the x-axis. Letr = |E|/|V], the first four pairs are witlh = 3, and the
remaining pairs are withh = 4. We compare the size by the number of units where
a unit can be an integer. Note for the interval code, 2 unitsfart and end numbers
and 1 unit for postnumber. The 2-hop labeling outperforntesriral labeling in all the

8 graphs. As thes = |E|/|V| and|V] increase, the size of the interval code increases
significantly, while the size of 2-hop cover remains similar

5.3 Exp-3: Test Dense Graphs

We test dense directed acyclic graphs using@#&-Graphgenerator. We fixV'| =
1,000, and vary|E|, based onE| = n - |V|, wheren is in range from120 to 480.
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The results are shown in Fig. 12 whete= |E|/|V| is shown in thez-axis. Note, let
|[V| = 1,000, |E| = 480,000 whenn = 480. C-G significantly outperform®* in
terms of efficiency, and achieves the similar qualitypdsioes.

We also conducted experiments GFG using large directed graphs. We fiX| =
100,000 and vary| E| from 120, 000 to 180, 000. The graphs are randomly generated
by the Graph-Bas@enerator [14]. The processing time decreases Whiléncreases,
because the number of strongly connected components sese&/hen the number of
strongly connected components is larger, the generatedtdd acyclic graph becomes
smaller. Therefore, the processing time becomes smaltertie fast one, we only
use 6.99 sec. to compute the 2-hop cover for a directed gréthhi®; 000 nodes and
180, 000 edges.
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5.4 Exp-4: Real Graph Datasets Testing

We tested several real datasets including Ecoo157 used §lipset of DBLP, which
consists of all the records for 5 international conferen&&MOD, VLDB, ICDE,
EDBT and ICDT, until 2004, and two XMark benchmark datas2€ [ising factor 0.1
and 0.2. We only show the results 6fG in Table 5, because the others consume too
much resources to compute. For example, for XMark datagdétfactor 0.2, denoted
XMK.02, the number of nodes is is 336K, and the number of edg@98K. It is a
sparse graph, the compression rate achieves up to 3,56prdbessing time is 3,600
seconds, and the memory consumption is 223MB at most, be€aGsdoes not need to
compute transitive closure, and uses rectangles. For thib sral dataset Ecoo157 with
12,620 nodes and 17,308 edg€sG only takes 0.36 seconds, and consumes 10MB
memory.

5 A snapshot ohttp://dblp.uni-trier.de/xml/dblp.xml in Mar/2004



[DataSef [V[|  |E|[[Time(sec.)Mem.(MB)[# of I/Og [H| IT([|T|/|H]]
Ecool57 12,620 17,309 0.36 9.8 237 23,913 2,402,260 100.44
DBLP [140,008157,358 737.03 99.67 11,628 653,184 198,008,86/ 303.14
XMK.01]|167,865198,412 831.87 114.66 4,86 583,7062,009,963,1988,443.44
XMK.02[336,244397,713 3,598.69 222.52 9,41§1,165,68%4,156,191,41{B,565.44

Table 5. Performance on real graphs

6 Related Work

Agrawal et al studied efficient management of transitivatiehships in large databases
[1]. The interval based labeling in [1] for directed acydi@phs are reexamined for ac-
cessing graph, semistructured and XML data. Kameda [1@Jgmed a labeling scheme
for reachability in planar directed graphs with one souneé ane sink. Cohen et al
studied reachability labeling using 2-hop labels [2]. Sdted et al [18, 19] studied 2-
hop cover problem and proposed a divide-conquer apprody. dttempted to divide
a large graph into a set of even-partitioned smaller graphd,solve the 2-hop cover
problem for the large graph by post-processing the 2-hoprsofor the small graphs.
The work presented in this paper suggests that we can corapatge entire graph
efficiently without the need to divide a graph into a large wemof smaller graphs.
Also, when there is a need to compute a large graph usingv¥idedionquer approach
[18,19], using our approach, it only needs to divide a grayh & rather small number
of large graphs. In [22], we proposed a dual labeling schém@der to answer reach-
ability queries in constant time for large sparse graph Wwhrk in [22] is different
from the work presented in this paper. In this paper, we f@atusomputing 2-hops for
arbitrary graphs which can be either sparse or dense. $ensrdering schema were
proposed for processing structural joins over tree stredtdata (XML data) including
region-based [25, 24,17, 12], prefix-based [3, 16, 11, 13,@1d k-ary complete-tree-
based [15, 23].

7 Conclusion

In this paper, we studied a novel geometry-based algoritiafted MaxCardinality-G
as a set cover | solution, to solve the 2-hop cover problenn.aorithm utilizes an
efficient interval based labeling for directed acyclic drapand builds up a reachabil-
ity map which preserves all the reachability informatiorttie directed graph. With
the reachability map, our algorithm uses operations aga@tsangles to solve the 2-
hop cover efficiently. As reported in our extensive experitakstudies using synthetic
datasets and large real datasets, our algorithm can cor@ghae cover for large di-
rected graphs, and achieve the similar 2-hop cover size herGalgorithm can do.
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