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Abstract

Terrain can be approximated by a triangular mesh con-
sisting millions of 3D points. Multiresolution triangular
mesh (MTM) structures are designed to support applica-
tions that use terrain data at variable levels of detail (LOD).
Typically, an MTM adopts a tree structure where a parent
node represents a lower-resolution approximation of its de-
scendants. Given a region of interest (ROI) and a LOD,
the process of retrieving the required terrain data from the
database is to traverse the MTM tree from the root to reach
all the nodes satisfying the ROI and LOD conditions. This
process, while being commonly used for multiresolution ter-
rain visualization, is inefficient as either a large number
of sequential I/O operations or fetching a large amount of
extraneous data is incurred. Various spatial indexes have
been proposed in the past to address this problem, however
level-by-level tree traversal remains a common practice in
order to obtain topological information among the retrieved
terrain data. In this paper, a new MTM data structure called
direct mesh is proposed. We demonstrate that with direct
mesh the amount of data retrieval can be substantially re-
duced. Comparing with existing MTM indexing methods,
a significant performance improvement has been observed
for real-life terrain data.

1 Introduction

Interactive terrain visualization is a critical component
of a wide range of applications, such as 3D environmental
analysis, gaming, virtual walkthrough and many other GIS
applications. A surface can be approximated using a regular
or irregular mesh of millions of 3D points, which are natural
environment data measured or remotely sensed, or synthetic
data generated from surface simulation software. The cur-
rent trend to use commercial DBMS to manage terrain data
has been accelerated by several major factors. First, the
amount of highly detailed terrain data has been increased

dramatically, and it is not uncommon nowadays to have ter-
abytes of terrain, ocean or space surface data. Second, many
applications need to share terrain data and use them together
with other types of data (such as buildings or moving ob-
jects on or near the surface). Third, terrain data is captured
over a period of time thus multiple versions may be used
together for spatiotemporal analysis. Finally, terrain data is
typically used at different resolutions at the same time. For
example, the part closer to the viewer should be rendered at
a higher resolution than those parts further away in the same
image scene.

Data retrieval and rendering performance is a key chal-
lenge to allow high quality terrain data to be used by not
only the applications designed for high-end computers with
specialized graphics hardware, but also by ‘light-weight’
applications for use on ordinary desktops or wireless de-
vices and Internet applications. Storing terrain data at mul-
tiple resolutions is a common approach to improve terrain
visualization performance. The fact that terrain data can
be used at any LOD and that data of different LODs may
be used together to construct a single terrain scene means
that it is not feasible to pre-generate terrain data at a fixed
number of resolutions. Instead, multiresolution triangular
mesh (MTM) structures are commonly used to store ter-
rain data [4, 6]. Progressive mesh (PM) is one of the most
widely used MTM data structures, where terrain data is or-
ganized into a binary tree [8] (a detailed example is pro-
vided in Section 2). Each non-leaf node represents a lower-
resolution approximation of its descendants, and all the leaf
nodes form the terrain approximation with the highest LOD.
Given a ROI and a LOD, a common process to retrieve the
required terrain data from the database is to traverse the PM
tree from the root to reach all the nodes satisfying the ROI
and LOD conditions [2, 3]. This process returns a sub-tree
of the PM tree, and all the leaf nodes of the sub-tree form
an approximation of the terrain in the ROI with the desired
LOD. Note that the leaf nodes in the sub-tree can have the
same LOD (forviewpoint- independent querieswhere a uni-
form LOD is applied to all data points in the ROI), or dif-



ferent LOD (forviewpoint-dependent querieswhere LOD
of a data point may vary depending on its distance to the
viewer). A point in a PM tree can connect to not only its
neighboring points at the same LOD, but the points at any
LOD. In order to avoid the overhead for recording com-
plete point connectivity information (i.e., how points are
connected to form a triangular mesh), most MTM structures
have each node in the tree to record only the changes of con-
nectivity between a parent and its direct children. There-
fore, while only the leaf nodes of the sub-tree form the final
terrain approximation, the internal nodes of the sub-tree are
needed to obtain point connectivity information. The pro-
cess to select data from an MTM tree according to a given
ROI and LOD is calledselective refinement.

While selective refinement as a way to answer MTM
queries is easy to understand and is widely used by ter-
rain visualization applications, it is intrinsically inefficient
in terms of the I/O cost when the MTM tree nodes are stored
on disk, because the process of fetching data following the
tree structure means either a large number of sequential I/O
operations, i.e., one for each node split to avoid retrieving
any data that is not required; or fetching a large amount
of extra data (pre-fetch a lot of data to reduce the number
of I/O operations). Various spatial indexes have been pro-
posed in the past to address this problem in order to iden-
tify and fetch the required data efficiently from the database
[9, 12, 18]. Nonetheless, level-by-level tree traversal re-
mains common because of the hierarchical nature of MTM
data. A recently proposed method [20] aim to reduce the
number of retrievals by using heuristics. However, in the
worst case the number of retrievals is still quite large.

In this paper, we propose a new MTM structure called
direct mesh(DM) to improve the performance of process-
ing multiresolution terrain queries. Instead of designing
yet another spatial index to support DM data, we design
DM in such a way that existing spatial indexes can be used
(we use R∗-tree [1] in this paper). Different from the ex-
isting MTM structures which, by and large, treat terrain
visualization as a memory-resident procedure, DM is the
first MTM structure that supports identifying and fetching
query results directly from the database using general pur-
pose spatial indexes. A novel topology encoding scheme
is used in DM to allow reconstruction of a terrain approx-
imation from a set of points without the need to use all
their ancestors as in the PM tree, with a very small over-
head. A cost model for MTM query processing based on
DM is presented, together with an optimization algorithm
for viewpoint-dependent queries. When compared with ex-
isting MTM indexing methods, a significant performance
improvement has been observed for real-life terrain data.

The remainder of this paper is organized as follows. In
Section 2 we provide an introduction to multiresolution ter-
rain approximation and discuss different types of MTM

queries. Related work is presented in Section 3. Direct
mesh is introduced in Section 4, and DM-based query pro-
cessing and optimization are discussed in Section 5. A per-
formance study using two sets of real-life terrain data is re-
ported in Section 6. We conclude this paper in Section 7.

2 Multiresolution Terrain Approximation

In this section, we use PM as an example to explain the
construction of an MTM tree from a triangular mesh. Then,
we describe the reconstruction of a terrain approximation
from MTM for given ROI and LOD.

Constructing an MTM (PM) tree is a bottom-up pro-
cess. The original terrain data points are stored in the leaf
nodes of tree, one point in each node. Two nodes are se-
lected to collapse into their parent node if the resultant ter-
rain (with one less point) cause minimumapproximation
error comparing with the terrain they replace, according to
some error measures (e.g., the vertical distance from that
point to the terrain surface before collapsing its two chil-
dren nodes)[7, 13]. The parent node is a newly generated
data point associated with an approximation error. An ex-
ample of such collapse is shown in Figure 1(a), i.e., point
v1 andv2 collapse intov9. This process is repeated on the
resultant terrain approximation until a tree is formed (so the
entire terrain is approximated by one point). Such a tree is
an unbalanced binary tree. Following the MTM tree in Fig-
ure 1(b), we can track the steps of node collapsing during
the construction: pointv1 andv2 collapse intov9 (because
v9 is the parent node ofv1 andv2), thenv9 andv3 collapse
into v10, and so on. Each node in the tree records the fol-
lowing information:

(ID, x, y, z, e, parent, child1, child2, wing1, wing2)

whereID is the unique ID of the point,(x, y, z) is the co-
ordinates of the point in the 3D space,e is the LOD of the
point (as an approximation error value),parent, child1,
child2 are the IDs of its parent, left and right child node
(null for non-existence), andwing1 andwing2 are the IDs
of the left and the right point connecting to both children
(null for non-existence). In the example of Figure 1(a), the
wing points ofv9 is v4 andv7 (because they connect to both
v1 andv2, which are the child nodes ofv9). This informa-
tion is required during the reconstruction of an approxima-
tion from MTM, which is essentially the reverse process of
MTM construction. Knowing thatv4 andv7 are the wing
points ofv9 makes it possible to reverse the collapse in Fig-
ure 1(a). Note that the connectivity information is stored
implicitly in the MTM tree structure. For instance, in Fig-
ure 1(a) the mesh after collapse is an approximation, but
the connectivity information among points in this approxi-
mation (i.e.v8 connects tov9) can not be derived from the
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(a) One step in MTM construction

(b) MTM tree structure

(c) Reconstructed mesh

Figure 1. MTM example.

information stored at these two nodes. The retrieval of con-
nectivity information is discussed in more detail later in this
section.

For a given MTM treeM , a viewpoint-independent
query takes two parameters: a ROI represented as a rect-
angler, and a LOD represented as a valuee (in the unit
used for approximation error measurement when building
the MTM tree). The LOD value for a query can either be
given by the user, or estimated according to the ROI and
the resolution of the target display device [21]. This query,
denoted asQ(M, r, e), returns a sub-treeM ′ of M such that

1. M ′ contains the root ofM ;

2. for any leaf nodem ∈ M ′, point(m.x, m.y) is within
r; and

3. for any nodem ∈ M ′, m.e ≤ e if and only if m is a
leaf node.

A straightforward method to answer a viewpoint-
independent query is to reverse the process of MTM
tree construction.M ′ starts as a sub-tree with only the
root and expands following the tree structure (downwards)
when a node (or any of its descendants) is within the ROI
and whose LOD value is larger than the given LOD. The

construction of an approximation of the sub-tree in Figure
1(b) is depicted in Figure 1(c). Taking the split ofv13 into
v8 andv12 as an example (the last step in Figure 1(c)), the
connectivity information between the child nodes ofv13

(v8 andv12) and other nodes (v7 andv10) depends on the
wing1 andwing2 of v13. As a boundary point,v13 has one
wing pointv7 (the other wing point isnull). Thus, bothv8

andv12 connect tov7.
Note that for any non-leaf nodem′ of M ′, (m′.x,m′.y)

may not necessarily be insider (even if some of its descen-
dent nodes are). Thus, all internal nodes of the MTM tree
must record its point coordinates, as well as its ‘footprint’
(as a minimum bounding rectangle, orMBR, of its descen-
dant points). In that sense, an MTM tree forms a spatial
containment hierarchy.

A viewpoint-dependent queryis similar to a viewpoint-
independent query except that the query does not have a
fixed LOD value. This permits different LODs for different
sub-regions ofr such that the region closer to the viewer
can have a higher LOD (i.e., a smaller approximation er-
ror value) than those sub-regions that are further away.
The required LOD for a point in a viewpoint-dependent
query can be estimated, for example, using the formula
f(m.e, d) ≤ E for nodem whose distance to the viewer is
d, f is a simple rule-of-thumb function, andE is a constant
[9]. Conceptually, a viewpoint-dependent query can be con-
sidered as a number of viewpoint-independent queries, each
with a sub-region and a uniform LOD.

Although only the leaf nodes ofM ′ will appear in the
final terrain visualization, those internal nodes ofM ′ need
to be traversed in order to determine the triangulation of the
leaf points (i.e., the connectivity information among the leaf
points). One may suggest not relying on ancestor nodes to
record connectivity information by letting each point record
all its neighboring points directly. The purpose of using an
MTM data structure, however, is defeated by doing so. The
number of neighbors of a point at a single LOD level is typ-
ically not very large (less than 10 in general). However, as
mentioned points at different LODs may connect to each
other (for answering viewpoint-dependent queries, for ex-
ample). This makes the total number of possible neighbors
prohibitively large, as we shall show later. An MTM tree as
described above records cross LOD level connectivity in-
formation implicitly with each node recording connectivity
information to only two nodes (wing1 andwing2 as given
before).

3 Related Work

Multiresolution terrain data form a natural spatial con-
tainment hierarchy. This property has been exploited for
fast multiresolution terrain data retrieval. The LOD-R-tree
is one of the first attempts to use spatial indexes to speed
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up multiresolution terrain data retrieval [12]. It extends the
traditional R-tree index in the following way. A normal R-
tree is created on the points of the original mesh (i.e., with
the highest LOD), by grouping points into data objects first.
A leaf node of the R-tree created is a subset of the origi-
nal mesh. For each internal node of the R-tree, an approx-
imation mesh at a lower LOD is created by combining and
generalizing the meshes of all its children nodes. There-
fore, each R-tree node has not only an MBR but also a LOD
value. Selective refinement on the LOD-R-tree is converted
to a range query whose query window is the ROI. The tra-
verse of the LOD-R-tree stops when the LOD of node is
sufficient for the query. Meshes at different R-tree nodes
may need to be mosaiced after the data is retrieved. This
approach builds its own multiresolution hierarchy, thus does
not support MTM structures such as PM. For a viewpoint-
dependent query, the query ROI needs to be decomposed
into several sub-queries, each with a sub-region and a dif-
ferent LOD. Another problem with this approach is that the
MBR of internal R-tree nodes is determined for optimizing
R-tree performance. It does not support flexible granularity
control thus entire node needs to be retrieved even if only a
small part of the area covered by the node is needed.

Hoppe [9] suggests an approach similar to the LOD-R-
tree, but using a 2D quadtree [16] instead. A quadtree index
is created on the original terrain data. An approximation
(with LOD lower than it child nodes) covering its descen-
dant nodes is stored at each internal nodes of quadtree. The
data fetching forQ(M, r, e) is similar to the LOD-R-tree,
and it shares the same problems of LOD-R-tree.

Shouet al improve the LOD-R-tree by considering data
visibility, and propose a new indexing method called the
HDoV-tree [17, 18]. Visibility information is stored at ev-
ery node of the LOD-R-tree, so occluded parts of terrain
within the ROI can be excluded and approximation with
lower LOD can be used for the areas in distance or with
a low degree of visibility. HDoV-tree is an optimization for
data reduction by visibility. However, it does not address the
problems associated with LOD-R-tree as mentioned above.

Xu [20] proposes to use a 3D quadtree, in which the
LOD dimension is added. The LOD-quadtree is an adap-
tive quadtree that can handle the fact that point data are
more uniformly distributed in the(x, y) space but severely
skewed in the LOD dimension.Q(M, r, e) is translated into
a 3D range query using bothr ande and a better perfor-
mance has been achieved compared to Hoppe’s method [9].
The performance of using LOD-quadtree can be degraded
by treating the internal nodes as point data (rather than a
minimum bounding rectangle for all descendants). This
means that more queries needed in order to find those inter-
nal nodes which are not insider but some of its descendants
are.

4 Direct Mesh

In PM, the connectivity information of each point is
stored at the node for that point and all its ancestor nodes
in the PM tree. Thus, the cost for processingQ(M, r, e)
consists two components: one to retrieve the point data that
are used to form the requested terrain, and the other to re-
trieve their ancestors to obtain connectivity information. As
we have shown in the previous section, the cost of the first
component can be reduced by using various spatial indexes
such as the LOD-quadtree. However, there is no available
technique to reduce the cost of the second component. It is
well known that the relational model is not efficient to han-
dle such parent-children relationship. The fact that some
ancestor points may be outside regionr further complicates
this issue, as every parent node must include an MBR of
its descendants in order for it to be retrieved with any of
its descendants. Clearly, the nodes higher in the PM tree
will have very large MBRs and the MBRs among sibling
nodes will significantly overlap with each other. Therefore,
we can conclude that all existing spatial indexing mech-
anisms, which, in one way or another, depend on non-
overlapping data clustering to function efficiently, are not
ideal approaches for managing MTM data.

One obvious solution to this problem is to store the com-
plete connectivity information at each node. The points that
one point can connect to are called itsconnection points. As
viewpoint-dependent query may return a mesh with points
at varying LOD, a point may have connection points with
different LODs. If pointm′ is a connection point of point
m, then the parent ofm′ is also a connection point ofm, be-
cause the parent node ofm′ connects to all the connection
points ofm′. Similarly, the child nodes ofm′ may also be
the connection points ofm, because at least one child node
of m′ connects tom. To be precise, the following rules
hold:

1. when pointm′′ is the first common ancestor ofm and
m′, any ancestor ofm′ up tom′′ (excludingm′′) is a
connection point ofm;

2. at least one of the child nodes ofm′ (for examplem′′)
is a connection point ofm; and this also applies tom′′,
i.e., one of the child nodes ofm′′ is a connection point
of m. This applies recursively until reaches the leaf
level.

As these rules apply to connection points recursively, the to-
tal number of the points a point can connect to is potentially
very large. A naive way to store complete connectivity in-
formation at each node could incur substantial overhead and
cause redundancy. This is the reason that most MTM struc-
tures adopt a tree-like structure.

Before we introduce a new connectivity encoding
scheme, we need to normalize the LOD definition such that
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for any two nodesm, m′ ∈ M , m.e ≥ m′.e if m is the
parent ofm′ (note that many approximation error measures,
such as the vertical distance method mentioned before, does
not guarantee this property) [4]. For a given MTM treeM
where each node has already been assigned with a LOD
value, we define its new LOD value using the following for-
mula:

m.e =
{

0, if m is a leaf node
max(m.e,m.child1.e,m.child2.e), otherwise.

Now we assign each node anLOD interval[elow, ehigh).
If m is not the root,m.elow = m.e and m.ehigh =
m.parent.e; and for the root node, its LOD interval is de-
fined as[m.e,∞). Using LOD intervals, selective refine-
ment to find a mesh of LODe is equivalent to finding all
point nodes whose LOD intervals enclosese.

Finally, we define that pointm andm′ have asimilar
LOD if their LOD intervals overlap. Two points with a sim-
ilar LOD implies there exists a LOD valuee such that a
viewpoint-independent queryQ(M, r, e), wherer is an area
that covers bothm andm′, will retrieve both points. There-
fore, we propose to store at each nodem a listL of connec-
tion point IDs, such that for anym′ ∈ L, m andm′ have a
similar LOD. The number of connection points with similar
LOD is substantially smaller than the number of all possible
connection points. Tests show that for each point the aver-
age number of connection points with a similar LOD is 12
in both test datasets we used (one with 2 million points, the
other with 17 million points). Whereas the average num-
ber of total connection points is 180 for the 2-million-point
dataset and 840 for the 17-million-point dataset.

A direct mesh (DM) is constructed from a PM by adding
a list of IDs for the connection points of similar LOD to
each node. An example is shown in Figure 2. Figure 2(a)
presents the LOD interval ofv4, v10, v11 andv12. Note that
point v4 is a leaf node (Figure 2(b)), so its LOD interval
starts from0. Point v12 is the parent ofv4 andv11 (Fig-
ure 2(b)), so their LOD intervals do not overlap and they
do not have a similar LOD with each other. They are not
connection points to each other, either, because parent-child
points can not exist together in any approximation. Other
points are points with a similar LOD to each other since
their LODs interval overlap. We assume that they are con-
nection points to each other. The lists stored at these four
points are shown in Figure 2(b). For example, the list ofv4

containsv10 andv11 (and possibly other points that are not
in Figure 2(a)). DM inherits PM’s property to be able to de-
rive viewpoint-dependent or viewpoint-independent terrain
of any size and any LOD. More importantly, it eliminates
the need to fetch all internal nodes to the root in order to ob-
tain connectivity information. As explained in the next sec-
tion, for a viewpoint-independent query, a single SQL query
is sufficient to retrieve both terrain data and their connectiv-

(a) LOD interval

(b) Point list

Figure 2. Direct mesh.

ity information; and for a viewpoint-dependent query, selec-
tive refinement can be performed starting from the lowest
LOD required by the query instead of the root node.

To store the DM data in a database we can build
a 3D R-tree on the DM points (for leaf and inter-
nal nodes) in the(x, y, e) space. A point m be-
comes a vertical line segment in the 3D space (i.e.,
< (m.x,m.y, m.elow), (m.x,m.y, m.ehigh) >). Next we
demonstrate efficient processing of different types of MTM
queries on DM with a 3D R-tree.

5 DM-Based Query Processing

In this section, we discuss the processing of viewpoint-
independent and viewpoint-dependent queries using the
DM structure and the R-tree index.

5.1 Viewpoint-Independent Query

Viewpoint-independent query processing based on DM
is simple. ForQ(M, r, e), a query planeparallel to the
(x, y) plane, shown as the shaded part in Figure 3, is used to
retrieve the data using the 3D R-tree index. Compared with
processing the same query on PM data using LOD-quadtree
[20], DM retrieves much less data because only the data
having LOD interval intersects with the query plane needs
to be fetched. Under the LOD-quadtree, the query needs
to be converted into a 3D range query using a query cube
defined by ther, e and the maximum LOD of the dataset
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Figure 3. DM for viewpoint-independent
queries.

(shown as the solid line cube in Figure 3). Data retrieved
by DM all have similar LOD as their LOD interval at least
overlap ate, so their connectivity information can be found
at these nodes.

5.2 Viewpoint-Dependent Query - Single Base

Let the ROI of a viewpoint-dependent query ber and
the LOD range be(emin, emax). The query plane for a
viewpoint-dependent query can be arbitrarily positioned in
the (x, y, e) space. We start with a straightforward algo-
rithm using a cube to approximate the query plane. Thetop
planeandbottom planeare defined as the planes specified
by (r, emax) and(r, emin) respectively (as shown in Figure
4). Both planes are parallel to the(x, y) plane and when
combined define a query cube (shown as the solid line cube
in Figure 4). Then, the following algorithm can be used to
process a viewpoint-dependent query.

Algorithm 1 SingleBase(r, emin, emax)
1: let C be the query cube defined usingr, emin, emax

2: fetch all the points in the cube
3: construct a meshM ′ on the top plane
4: refineM ′ using the retrieved data to create the mesh on

the query plane
5: return the final mesh

Data retrieval is done in step 2, where the 3D R-tree in-
dex on the dataset can be effectively used. The query results
are returned in the descending order of approximation error,
such that the mesh on the top plane can be created in step 3
(similar as in processing the viewpoint-independent query).
The refinement process in step 4 is essentially the same to
selective refinement using PM.

Comparing to PM-based query processing, the query
cube used here is smaller as the top plane is no longer the
maximum LOD of the data set (i.e., that of the root node).

Figure 4. Single base method for viewpoint-
dependent queries.

5.3 Viewpoint-Dependent Query - Multiple Base

The total amount of data retrieved for a viewpoint-
dependent query, represented as volume of the query cube
in Figure 4, can be further reduced. The ideal approach is
to retrieve only points whose LOD interval intersects with
the query plane in Figure 4, because these are the points
that form the approximation. However, these points do not
necessarily have a similar LOD since the LOD of the query
plane varies. As discussed in Section 4, this requires storing
the connectivity information of all possible LODs, which
will introduce excessive overhead. Here we propose a dif-
ferent approach to reduce the data amount of viewpoint-
dependent queries. For simplicity of presentation, we as-
sume the query plane is parallel to thex-axis, so we can use
the projection on the(y, e) plane for discussion hereafter.
In practice, the method is applicable when the query plane
is arbitrarily positioned. The rectangle in Figure 5(a) shows
the total amount of data to be fetched by the single base
algorithm, whereas Figure 5(b) shows a possible optimiza-
tion using two top planes (where the amount of data to be
fetched is the sum of the two rectangles).

Each rectangle in Figure 5 implies a range query. In-
tuitively, the more range queries used, the less the total
amount of data retrieved. At the same time, the cost re-
lated to the number of queries executed increases (mainly
related by repeated index search). The key to this optimiza-
tion problem is to find the optimal number of queries for
a viewpoint-dependent query, which requires estimation of
the I/O cost for executing a range query using the R-tree
index. The problem of analyzing the I/O cost for range
queries using R-tree and its variants has been studied ex-
tensively in the past [5, 10, 11, 14, 15, 19]. The number of
disk accesses (DA) using a3-dimensional R-tree indexR
with N nodes to process a range queryq can be estimated
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Figure 5. Multiple base optimization.

using the following formula [11, 14]:

DA(R, q) =
N∑

i=1

(qx + wi) · (qy + hi) · (qz + di) (1)

whereqx, qy andqz are the width, height and depth of the
query cube, andwi, hi and di are the width, height and
depth of nodei of R. All the values are normalized accord-
ing to the data space.

As there is only one range query in the single-base
method, formula (1) provides the estimation of its I/O cost.
When two top planes are used by the multi-base algorithm
(Figure 5(b)), the total costDA′(R, q) is:

DA′(R, q) =
N∑

i=1

(qx1 + wi) · (qy1 + hi) · (qz1 + di)

+
N∑

i=1

(qx2 + wi) · (qy2 + hi) · (qz2 + di) (2)

whereqx1, qy1, qz1 andqx2, qy2, qz2 are the sides of the two
query cubes used. It is beneficial to use two query cubes
instead of one if the following condition holds:

DA(R, q)−DA′(R, q) > 0 (3)

From Figure 5, we have:

qx = qx1 = qx2 (4)

qy = qy1 + qy2 (5)

qz = qz1 + qz2 (6)

Note that formula 4 to 6 still hold if the query plane is not
parallel to thex-axis, because this will only change the po-
sition of query plane, not its size. Combining(1)-(6), we
have

N∑

i=1

(qx1 + wi)(qyqz − (qy1qz1 + qy2qz2)− hidi) > 0 (7)

As the size of R-tree nodes (hi, di, wi) can be found from
the R-tree index, all the data required for this optimization is
available. Intuitively, whether to use single-base or multi-
base algorithm depends on the size of the query window.
The bigger the query window, the more likely (7) holds. The
maximum benefit can be achieved when the value below is
maximized:

qy · qz − (qy1 · qz1 + qy2 · qz2) (8)

This gives the area difference between the rectangle for the
single-base case in Figure 5(a) and the sum of the two rect-
angles for the multi-base case in Figure 5(b). Asqy andqz

are given by the query,qy · qz is a constant. Therefore,

qy1 · qz1 + qy2 · qz2 (9)

is the only varying part. To maximize the value of (8),
(9) should be minimized. This means that dividing the top
plane used by the single-base algorithm in the middle will
give the maximum reduction in the I/O cost when two range
queries are used.

The discussion above can be recursively extended such
that more than two query cubes may be used by the multi-
base algorithm.

We should mention that all connectivity information can
still be found even when multiple top planes are used. Al-
though the meshes created on these different top planes can-
not be directly connected with each other, the meshes re-
fined to the query plane can be connected. This is possi-
ble because the points on the query plane where two query
cubes meet always have similar LOD.

6 Performance Evaluation

In this section, we test the performance of query process-
ing based on our proposed methods and compare them with
PM and HDoV tree. DM is created as described in Section
4 and a 3D R∗-tree is used. For DM, both the single-base
and multi-base algorithms are tested (indicated as SB and
MB respectively). The PM approach is implemented fol-
lowing the algorithms in [9]. A LOD-quadtree, which is
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(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset

(c) Varying ROI - 17M dataset (d) Varying LOD - 17M dataset

Figure 6. Uniform mesh.

reported as having better performance than other spatial in-
dexes for MTM data[20], is used for PM data. The HDoV
tree is constructed following the algorithms in [18]. The ter-
rain is partitioned into grids, which serve as the objects in
the HDoV tree. Visibility data is stored using the “indexed-
vertical storage scheme”, which is reported to have the best
performance among the proposed schemes for the HDoV-
tree. No additional spatial index is used with the HDoV
tree.

We use Oracle Enterprise Edition Release 9.0.1 in our
tests. Its object-relational features and the Oracle Spatial
Option are not used in order to have a better control and
understanding of query execution performance. All spatial
indexes used in this test are implemented by ourself. B+-
tree indexes are created wherever necessary for all the ta-
bles used. The database and system buffer is flushed before
each test. Other software packages used are Java SDK 1.3
and Java3D SDK (openGL) 1.2. The hardware used is a
Pentium III 700 with 512MB memory. We use two terrain
datasets. The first one is a real dataset of 2 million points
from a local mining software company. The second dataset
is the DEM model of “Crater Lake National Park” from
U.S. Geological Survey (www.usgs.gov) with 17 million

points. Both datasets are pre-processed using the Quadric
Error Metrics [7].

The total cost of MTM query processing is composed of
two parts: the cost of data retrieval (I/O cost) and the cost
of mesh construction (CPU cost). It is found that the cost of
mesh construction is very small in comparison to the cost of
data retrieval. Therefore, we focus on the I/O cost , which
is measured by the number of disk accesses (obtained from
Oracle’s performance statistics report). However, the CPU
cost of DM mesh construction is smaller than the other two
methods because it retrieve less and thus a smaller amount
of refinement, if there is any. Not measured are those once-
off costs, including the initial construction of indexes.

All tests are performed on both datasets and the values
in the results are the average value of creating the same
mesh (same ROI and LOD) at 20 randomly-selected loca-
tions. Terrain data is arranged on the disk in such a way that
their (x, y) clustering is preserved as much as possible.

6.1 Viewpoint-Independent Query Performance

There are two main factors that affect the performance
of viewpoint-independent queries, ROI size and LOD. Gen-
erally, the I/O cost increases as the ROI increase, or as the
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LOD value decreases (the decrease of LOD value means
a more detailed mesh). To separate the effects of ROI and
LOD, we include two sets of tests. The first set tests the per-
formance of queries with varying ROI, whereas the second
set tests the performance of queries with varying LOD. Only
the performance of the single-base method (SB) is included
because the multi-base method (MB) is not applicable to
viewpoint-independent queries. Figures 6(a) and 6(c) show
the results of tests with varying ROI on the datasets with 2
million points and 17 million points respectively. The x-axis
measures ROI size, shown as the percentage of the dataset
area, and y-axis measures the number of disk accesses. The
LOD of the mesh is set to the average LOD value of the
dataset, and the range of ROI in these tests is chosen to
allow for a mesh with reasonable data density when dis-
played, i.e., avoid the case that a mesh is crowded with
points and becomes illegible when displayed. Figures 6(b)
and 6(d) show the results of tests with varying LOD, again
on the dataset with 2 million points and 17 million points
respectively. The x-axis measures LOD value, shown as the
percentage of maximum LOD value in the dataset, and y-
axis measures the number of disk accesses. The ROI is set
to 10% for the 2M dataset and 5% for the 17M dataset. We
include the results of LOD value range that contains sub-
stantial number of points. Performance change can hardly
be observed when the LOD value is beyond these ranges.
A similar trend is observed in Figures 6(a) and 6(c) (also in
Figures 6(b) and 6(d)) where DM clearly outperforms the
other two methods.

6.2 Viewpoint-Dependent Query Performance

For viewpoint-dependent queries, there are three major
factors that affect the performance. Besides the ROI and
LOD, the third factor is the changing rate of LOD. To de-
scribe the LOD changing rate, we introduce ananglepa-
rameter, which is the angle between the query plane and
the bottom plane (Figure 7). The larger the angle, the more
rapid the change of LOD in the mesh is. For viewpoint-
dependent queries, there are three sets of tests based on
these three factors. The first two sets are similar to the pre-
vious tests: the performance of viewpoint-dependent query
is tested with varying ROI and LOD respectively. The third
set of tests assess the performance of viewpoint-dependent
query with different angle. In this set, the query plane has a
fixedemin, and theemax changes according to the variation
of angle. The angle values shown in the results are shown as
the percentage of the maximum possible angle valueθmax,
which is given by the following formula:

θmax = arctan
(

LODdataset max

ROI

)

where theLODdataset max is the maximal LOD value of
the dataset.

Figure 7. Angle of viewpoint-dependent
mesh.

Figures 8(a) and 8(d) show the test results of the first
set. The x-axis is the ROI size and y-axis is the number of
disk accesses. We set the angle to half the value ofθmax.
Other parameters are the same as those of analogous tests in
the viewpoint-independent query section. Figures 8(b) and
8(e) show the test results of the second set. The x-axis is
theemin of the query and y-axis is the number of the disk
accesses. The angle is the same as in the previous set and the
emax is decided by theemin and angle. All other parameters
are the same as those in the uniform mesh section. Figures
8(c) and 8(f) show the test results of the third set. The x-axis
is the angle and y-axis is the number of the disk accesses.
The ROI setting is the same as the one in the previous set
and theemin is set to 1% to allow for a large angle range.

In these tests, the PM and HDoV-tree have similar costs,
which are much larger than the cost of DM. The PM re-
trieves substantially more data than DM, which is the main
cause of its poor performance. The visibility selection does
not help the HDoV-tree much because obstruction among
the areas of the terrain is not as much as in the synthetic
city model described in [18]. Hence the HDoV-tree does
not always significantly reduce the amount of data retrieved.
DM with multi-base algorithm performances the best. The
comparison with the single-base method shows that the op-
timization significantly reduces the retrieval cost. Note that
the performance of the DM decreases as the angle increase
(Figure 8(c) and 8(f)). The reason is that the increase of an-
gle implies a bigger difference between theemin andemax,
thus a larger query cube for single-based method (similar to
multi-based method) as theemin is fixed. However, even
single-base method still keeps a margin of performance ad-
vantage (as explained in Figure 4)

7 Conclusion

In this paper we have presented a new multiresolu-
tion terrain data structure called direct mesh. It is a set-
operation-friendly data structure particularly suitable for us-
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(a) Varying ROI - 2M dataset (b) Varying LOD - 2M dataset (c) Varying angle - 2M dataset

(d) Varying ROI - 17M dataset (e) Varying LOD - 17M dataset (f) Varying angle - 17M dataset

Figure 8. Viewpoint-dependent mesh.

ing a relational DBMS to manage hierarchical multiresolu-
tion terrain data. It achieves a good balance between the
need of tree-like traversal in order to obtain connectivity in-
formation and the overhead of materializing excessive level
of redundant information by allowing each node to record
only the connectivity information to the nodes with a sim-
ilar LOD. It is the first MTM structure purposely built to
support efficient database query processing.
Acknowledgment: The work reported in this paper has
been support by an Australian Research Council Discovery
Project grant (grant number: DP0345710).
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